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Variance of the Volume of Random Real
Algebraic Submanifolds II

THOMAS LETENDRE & MARTIN PUCHOL

ABSTRACT. Let X be a complex projective manifold of dimension
n defined over the reals, and let M be its real locus. We study the
vanishing locus Zsd in M of a random real holomorphic section sd of
E ⊗ Ld, where L → X is an ample line bundle and E → X is a rank
r Hermitian bundle, r ∈ {1, . . . , n}. We establish the asymptotic of
the variance of the linear statistics associated with Zsd , as d goes to
infinity. This asymptotic is of order dr−n/2. As a special case, we get
the asymptotic variance of the volume of Zsd .

The present paper extends the results of [22], by the first-named
author, in essentially two ways. First, our main theorem covers the
case of maximal codimension (r = n), which was left out in [22].
Second, we show that the leading constant in our asymptotic is posi-
tive. This last result is proved by studying the Wiener-Itô expansion
of the linear statistics associated with the common zero set in RPn of
r independent Kostlan-Shub-Smale polynomials.
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1650 THOMAS LETENDRE & MARTIN PUCHOL

1. INTRODUCTION

In recent years, the study of random submanifolds has been a very active research
area [9, 14, 15, 25, 26, 29]. There exist several models of random submanifolds,
built on the following principle. Given M a dimension n ambient manifold and
r ∈ {1, . . . , n}, we consider the common zero set of r independent random func-
tions on M . Under some technical assumption, this zero set is almost surely a
codimension r smooth submanifold.

In this paper, we are interested in a model of random real algebraic subman-
ifolds in a projective manifold. It was introduced in this generality by Gayet and
Welschinger in [13] and studied in [14, 15, 21, 22], among others. This model is
the real counterpart of the random complex algebraic submanifolds considered by
Bleher, Shiffman and Zelditch [6, 30, 31].

Framework. Let us describe more precisely our framework. More details
are given in Section 2, below. Let X be a smooth complex projective manifold of
dimension n á 1. Let L be an ample holomorphic line bundle over X, and let
E be a rank r ∈ {1, . . . , n} holomorphic vector bundle over X. We assume that
X, E, and L are endowed with compatible real structures and that the real locus
of X is not empty. We denote by M this real locus which is a smooth closed (i.e.,
compact without boundary) manifold of real dimension n.

Let hE and hL denote Hermitian metrics on E and L, respectively, which are
compatible with the real structures. We assume hL has positive curvature ω, so
that ω is a Kähler form on X. This ω induces a Riemannian metric g on X,
and hence on M . Let us denote by |dVM | the Riemannian volume measure on M
induced by g.

For any d ∈ N, the measure |dVM | and the metrics hE and hL induce a
Euclidean inner product on the space RH0(X,E⊗Ld) of global real holomorphic
sections of E ⊗ Ld → X (see equation (2.2)). Given s ∈ RH0(X,E ⊗ Ld), we
denote by Zs = s−1(0)∩M the real zero set of s. For d large enough, for almost
every s with respect to the Lebesgue measure, Zs is a codimension r smooth closed
submanifold of M , possibly empty. We denote by |dVs | the Riemannian volume
measure on Zs induced by g. In the following, we consider |dVs| as a Radon
measure on M , which is a continuous linear form on (C0(M),‖ · ‖∞), where
‖ · ‖∞ denotes the sup norm.

Remark 1.1. If n = r then Zs is a finite subset of M for almost every s. In
this case, |dVs | is the sum of the unit Dirac masses on the points of Zs .

Let sd be a standard Gaussian vector in RH0(X,E ⊗ Ld). Then, |dVsd| is
a random positive Radon measure on M . We set Zd = Zsd and |dVd| = |dVsd|
in order to simplify notation. We are interested in the asymptotic distribution of

the linear statistics 〈|dVd|,φ〉 =
∫

Zd
φ |dVd|, where φ : M → R is a continuous

test-function. In particular, 〈|dVd|,1〉 is the volume of Zd (its cardinal if n = r ),
where 1 is the unit constant function on M .
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Variance of the Volume of Random Real Algebraic Submanifolds II 1651

As usual, we denote by E[X] the mathematical expectation of the random
vector X. The asymptotic expectation of 〈|dVd|,φ〉 was computed in Section 5.3
of [21].

Theorem 1.2 ([21]). Let X be a complex projective manifold of positive dimen-
sion n defined over the reals; we assume that its real locus M is non-empty. Let E → X
be a rank r ∈ {1, . . . , n} Hermitian vector bundle, and let L → X be a positive Her-
mitian line bundle, both equipped with compatible real structures. For every d ∈ N,
let sd be a standard Gaussian vector in RH0(X,E ⊗ Ld). Then, the following holds
as d→ +∞:

∀φ ∈ C0(M), E[〈|dVd|,φ〉] = dr/2
(∫

M
φ|dVM |

)
Vol(Sn−r )
Vol(Sn)

+ ‖φ‖∞O(dr/2−1).

Moreover, the error term O(dr/2−1) does not depend on φ.
The asymptotic variance of 〈|dVd|,φ〉, as d goes to infinity, was proved to

be a O(dr−n/2) when the codimension of Zd is r < n (see [22, Theorem 1.6]).
Our first main theorem (Theorem 1.6 below) extends this result to the maximal
codimension case.

Statement of the main results. Before we state our main result, let us intro-
duce some more notation. We denote the covariance of the real random variables
X and Y by Cov(X, Y) = E[(X − E[X])(Y − E[Y])]. Let Var(X) = Cov(X,X)
denote the variance of X. Finally, we call variance of |dVd|, and we denote by
Var(|dVd|) the symmetric bilinear form on C0(M) defined by

∀φ1,φ2 ∈ C0(M), Var(|dVd|)(φ1,φ2) = Cov(〈|dVd|,φ1〉, 〈|dVd|,φ2〉).

Definition 1.3. Given φ ∈ C0(M), we denote by ̟φ its continuity modulus,
which is the function from (0,+∞) to [0,+∞) defined by

̟φ : ε 7 -→ sup{|φ(x)−φ(y)|
∣∣∣(x,y) ∈M2, ρg(x,y) à ε},

where ρg(·, ·) stands for the geodesic distance on (M,g).

We denote byMrn(R) the space of matrices of size r×n with real coefficients.

Definition 1.4. Let L : V → V ′ be a linear map between two Euclidean spaces.
We denote the Jacobian of L by |det⊥(L)| =

√
det(LL∗), where L∗ : V ′ → V is

the adjoint operator of L. Similarly, let A ∈Mrn(R); we define its Jacobian to be
|det⊥(A)| =

√
det(AAt).

Definition 1.5. For every t > 0, we define (X(t), Y(t)) to be a centered
Gaussian vector in Mrn(R)×Mrn(R) such that the following hold:

• The couples (Xij(t), Yij(t)) with i, j ∈ {1, . . . , n} are independent from
one another.
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1652 THOMAS LETENDRE & MARTIN PUCHOL

• The variance matrix of (Xij(t), Yij(t)) is




1− te−t

1− e−t e−t/2
(

1− t

1− e−t
)

e−t/2
(

1− t

1− e−t
)

1− te−t

1− e−t


 if j = 1,

and (
1 e−t/2

e−t/2 1

)
otherwise.

We can now state our main result.

Theorem 1.6. Let X be a complex projective manifold of dimension n á 1
defined over the reals. We assume its real locus M is non-empty. Let E → X be a rank
r ∈ {1, . . . , n}Hermitian vector bundle, and let L → X be a positive Hermitian line
bundle, both equipped with compatible real structures. For every d ∈ N, let sd be a
standard Gaussian vector in RH0(X,E ⊗Ld).

Let β ∈ (0, 1
2); then, there exists Cβ > 0 such that, for all α ∈ (0,1), for all φ1

and φ2 ∈ C0(M), the following holds as d → +∞:

(1.1) Var(|dVd|)(φ1,φ2)

= dr−n/2
(∫

M
φ1φ2|dVM |

)(
Vol(Sn−1)

(2π)r
In,r + δrn

2
Vol(Sn)

)

+ ‖φ1‖∞ ‖φ2‖∞O(dr−n/2−α)+ ‖φ1‖∞̟φ2(Cβd
−β)O(dr−n/2),

where δrn is the Kronecker symbol, equal to 1 if r = n and 0 otherwise, and

(1.2) In,r =
1
2

∫ +∞

0

(
E
[
|det⊥(X(t))| |det⊥(Y(t))|

]

(1− e−t)r/2

− (2π)r
(

Vol(Sn−r )
Vol(Sn)

)2)
t(n−2)/2

dt < +∞.

Moreover, the error terms O(dr−n/2−α) and O(dr−n/2) in (1.1) do not depend on
(φ1,φ2).

Remark 1.7. Applying Theorem 1.6 with φ1 = 1 = φ2 gives the asymptotic
variance of the Riemannian volume of Zd.

Theorem 1.8. For any n ∈ N∗ and r ∈ {1, . . . , n}, the universal constant

Vol(Sn−1)

(2π)r
In,r + δrn

2
Vol(Sn)

appearing in Theorem 1.6 is positive.
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Variance of the Volume of Random Real Algebraic Submanifolds II 1653

Remark 1.9. Theorem 1.8 was proved for r = n = 1 in [11], and for r =
n á 2 in [2]. Note that Theorem 1.8 states that In,r > 0 if r < n, but this is not
necessarily the case when r = n. Indeed, I1,1 < 0 by Proposition 3.1 and Remark
1 in [11].

Let us state some corollaries of Theorem 1.6. Corollary 1.10, 1.11, and 1.12
below are extensions to the case r à n of Corollary 1.9, 1.10, and 1.11 of [22],
respectively. The proofs that Theorem 1.6 implies (i.e., Corollaries 1.10, 1.11,
and 1.12) were given in [22, Section 5] in the case r < n; they are still valid for
r à n. We do not reproduce these proofs in the present paper.

Corollary 1.10 (Concentration in probability). In the same setting as Theo-
rem 1.6, let α > −n/4 and let φ ∈ C0(M). Then, for every ε > 0, we have

P
(
d−r/2

∣∣〈|dVd|,φ〉 − E[〈|dVd|,φ〉]
∣∣ > dαε

)
= 1
ε2
O(d−(n/2+2α)),

where the error term is independent of ε, but depends on φ.
Corollary 1.11. In the same setting as Theorem 1.6, let U ⊂ M be an open

subset; then, as d→ +∞ we have P(Zd ∩ U = ∅) = O(d−n/2).
Let us denote the standard Gaussian measure on RH0(X,E⊗Ld) by dνd (see

(2.1)). Let dν denote the product measure
⊗
d∈N dνd on

∏
d∈NRH

0(X,E⊗Ld).
Then, we have the following result.

Corollary 1.12 (Strong law of large numbers). In the setting of Theorem 1.6,
let us assume n á 3. Let (sd)d∈N ∈

∏
d∈NRH

0(X,E ⊗ Ld) be a random sequence
of sections. Then, dν-almost surely,

d−r/2|dVsd| ----------------------------------------------------------------------------------------------------------------------------------------------------→
d→+∞

Vol(Sn−r )
Vol(Sn)

|dVM |,

in the sense of the weak convergence of measures. That is, dν-almost surely,

∀φ ∈ C0(M), d−r/2〈|dVsd |,φ〉 ----------------------------------------------------------------------------------------------------------------------------------------------------→
d→+∞

Vol(Sn−r )
Vol(Sn)

(∫

M
φ|dVM |

)
.

Related works and novelty of the main results. This paper extends the
results of [22] by the first-named author. In [22, Theorem 1.6], our main result
(Theorem 1.6 above) was proved for r < n and α ∈ (0, α0), where α0 ∈ (0,1)
is some explicit constant depending on n and r . The main novelty in Theorem
1.6 is that it covers the case of maximal codimension (r = n), that is, the case
where Zd is almost surely a finite subset of M . This case was not considered in
[22] because of additional singularities arising in the course of the proof, which
caused it to fail when r = n.

An important contribution of the present paper is that we prove new estimates
(see Lemmas 5.26, 5.28, and 5.29) for operators related to the Bergman kernel of
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1654 THOMAS LETENDRE & MARTIN PUCHOL

E ⊗ Ld, which is the correlation kernel of the random field (sd(x))x∈M . These
estimates are one of the key improvements that allow us to prove Theorem 1.6 in
the case r = n. They also allow us to consider α ∈ (0,1) instead of α ∈ (0, α0).
Finally, the use of these estimates greatly clarifies the proof of Theorem 1.6 in the
case r < n, compared to the proof given in [22]. For this reason, we give the
proof of Theorem 1.6 in the general case r ∈ {1, . . . , n} and not only for r = n.
This does not lengthen the proof.

The second main contribution of this article is the proof of the positivity of the
leading constant in Theorem 1.6 (cf. Theorem 1.8). This result did not appear in
[22]. Since the leading constant in Theorem 1.6 is universal, when r = n one can
deduce Theorem 1.8 from results of Dalmao [11] (if r = n = 1) and Armentano-
Azas-Dalmao-León [2] (if r = n á 2). In [2, 11], the authors proved Theorem
1.6 in the special case where Zd is the zero set in RPn of n independent Kostlan-
Shub-Smale polynomials (see Subsection 6.1 below). Their results include the
positivity of the leading constant, and hence imply Theorem1.8 in this case. To
the best of our knowledge, Theorem 1.8 is completely new for r < n.

Note that when n = r = 1, our setting covers the case of the binomial poly-
nomials on C with standard Gaussian coefficients. Much more is known in this
case, including variance estimates for the number of real zeros of non-Gaussian
ensembles of real polynomials (see [34]).

Our proof of Theorem 1.8 uses the Wiener-Itô expansion of the linear statis-
tics associated with the field (sd(x))x∈M . This kind of expansion has been studied
by Slud [33] and Kratz-León [18, 19]. It was used in a random geometry context
in [2, 11, 12, 25]. In [12, 25], the authors used these Wiener chaos techniques
to prove Central Limit Theorems for the volume of the zero set of Arithmetic
Random Waves on the two-dimensional flat torus (see also [11] in an algebraic
setting). In [2,11], these methods where used to prove Theorem 1.8 when r = n.

In the related setting of Riemannian Random Waves, Canzani and Hanin
[8] obtained recently an asymptotic upper bound for the variance of the linear
statistics. To the best of our knowledge, in this Riemannian setting, the precise
asymptotic of the variance of the volume of random submanifolds is known only
when the ambient manifold is S2 (cf. [35]) or T2 (cf. [12, 20]). We refer to the
introduction of [22] for more details about related works.

About the proofs. The proof of Theorem 1.6 broadly follows the lines of the
proof of [22, Theorem 1.6]. The random section sd defines a centered Gaussian
field (sd(x))x∈M whose correlation kernel is Ed, the Bergman kernel of E ⊗ Ld
(see Subsection 2.4). Thanks to results of Dai-Liu-Ma [10] and Ma-Marinescu
[24], we know that this kernel decreases exponentially fast outside of the diagonal
∆ = {(x,y) ∈ M2 | x = y}, and that it admits a universal local scaling limit
close to ∆ (see Section 3 for details).

By an application of Kac-Rice formulas (cf. Theorems 5.1, 5.5), we can ex-
press the covariance of 〈|dVd|,φ1〉 and 〈|dVd|,φ2〉 as a double integral over
M × M of φ1(x)φ2(y) times a density function Dd(x,y) that depends only
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Variance of the Volume of Random Real Algebraic Submanifolds II 1655

on Ed. Our main concern is to understand the asymptotic of the integral of
Dd(x,y), as d → +∞.

Thanks to the exponential decay of the Bergman kernel, we can show that the
leading term in our asymptotic is given by the integral ofDd over a neighborhood
∆d of ∆, of typical size 1/

√
d (see Proposition 5.22). Changing variables so that

we integrate on a domain of typical size independent of d leads to the apparition
of a factor d−n/2. Besides, Dd takes values of order dr on ∆d (see Proposition
5.25). This explains why the asymptotic variance is of order dr−n/2 in Theorem
1.6.

The behavior of Ed allows us to prove that Dd admits a universal local scaling
limit on ∆d. The main difficulty in our proof is to show that the convergence to
this scaling limit is uniform on ∆d (see Proposition 5.25 for a precise statement).
This difficulty comes from the fact that Dd is singular along ∆, just like almost
everything in this problem. This is where our proof differs from [22]. In [22],
the uniform convergence of Dd to its scaling limit on ∆d is not established, and
one has to work around this lack of uniformity. This yields a complicated proof
that fails when r = n. Here, we manage to prove this uniform convergence,
thanks to some new key estimates (see Lemmas 5.26, 5.28, and 5.29) that form
the technical core of the paper. This allows us to both improve on the results of
[22] and simplify their proof.

As we explained, our proof relies on two properties of the Bergman kernel
Ed: namely, the existence of a scaling limit around any point at scale 1/

√
d, and

its exponential decay outside of the diagonal. These features are also exhibited by
Bergman kernels in other settings such as those of [4] or [5], so one might hope
to generalize our results to these settings, at least in the bulk. Unfortunately, we
also need a precise understanding of the scaling limit of Ed, which is possible in
our framework because it is universal (it only depends on n) and invariant under
isometries (see Section 4 for more details). As far as we know, it is much more
complicated to study this scaling limit in other settings (such as those of [4] and
[5]), so we do not pursue this line of inquiry in the present paper, and leave it for
future research.

Let us now discuss the proof of Theorem 1.8. One would expect to prove
this by computing a good lower bound for In,r , directly from its expression (see
equation (1.2)). To the best of our knowledge this approach fails, and we have to
use subtler techniques.

Since the leading constant in (1.1) only depends on n and r , we can focus on
the case of the volume of Zd (where φ1 = 1 = φ2) in a particular geometric set-
ting. We consider the common real zero set of r independent Kostlan-Shub-Smale
polynomials in RPn (see Subsection 6.1 for details). This allows for explicit com-
putations since the Bergman kernel is explicitly known in this setting. Moreover,
the distribution of these polynomials is invariant under the action of On+1(R)
on RPn, which leads to useful independence proprieties that are not satisfied in
general.
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1656 THOMAS LETENDRE & MARTIN PUCHOL

In this framework, we adapt the strategy of [2, 11] to the case r < n. First,
we compute the Wiener-Itô expansion of the volume of Zd. That is, we expand
Vol(Zd) as

∑
q∈NVol(Zd)[q], where the convergence is in the space of L2 random

variables on our probability space, and Vol(Zd)[q] denotes the q-th chaotic com-
ponent of Vol(Zd). In particular, Vol(Zd)[0] is the expectation of Vol(Zd), and
the (Vol(Zd)[q])q∈N are pairwise orthogonal L2 random variables. Hence,

Var(Vol(Zd)) =
∑

qá1

Var(Vol(Zd)[q]).

The chaotic components of odd order of Vol(Zd) are zero, but we prove that
Var(Vol(Zd)[2]) is equivalent to dr−n/2C as d → +∞, where C > 0 (see Lemma
6.17). This implies Theorem 1.8.

Outline of the paper. In Section 2, we describe precisely our framework and
the construction of the random measures |dVd|. We also introduce the Bergman
kernel of E ⊗ Ld and prove that it is the correlation kernel of (sd(x))x∈M . In
Section 3, we recall estimates for the Bergman kernel, and its scaling limit. Section
4 is dedicated to the study of the Bargmann-Fock process, that is, the Gaussian
centered random process on Rn whose correlation function is

(w, z) 7 -→ exp(−1
2
‖w − z‖2).

This field is the local scaling limit of the random field (sd(x))x∈M , in a sense to be
made precise below. Section 5 and 6 are concerned with the proofs of Theorem 1.6
and Theorem 1.8, respectively. Note that in Section 6 we have to study in detail
the model of Kostlan-Shub-Smale polynomials, which is the simplest example of
our general real algebraic setting. We conclude this paper by two appendices, Ap-
pendix A and Appendix B, in which we have gathered the proofs of the technical
lemmas of Section 4 and Section 5, respectively.

2. RANDOM REAL ALGEBRAIC SUBMANIFOLDS

In this section, we introduce the main objects we will be studying throughout
this paper. We first recall some basic definitions in Subsection 2.1. In Subsection
2.2, we introduce our geometric framework. In Subsection 2.3, we describe our
model of random real algebraic submanifolds. Finally, we relate these random
submanifolds to Bergman kernels in Subsection 2.4.

2.1. Random vectors. Let us recall some facts about random vectors (see,
e.g., [21, Appendix A]). In this paper, we only consider centered random vectors,
so we give the following definitions in this setting.

Let X1 and X2 be centered random vectors taking values in Euclidean (or
Hermitian) vector spaces V1 and V2, respectively; then, we define their covariance
operator as

Cov(X1, X2) : v 7 -→ E[X1〈v,X2〉]
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Variance of the Volume of Random Real Algebraic Submanifolds II 1657

from V2 to V1. For all v ∈ V2, we set v∗ = 〈·, v〉 ∈ V∗2 . Then, Cov(X1, X2) =
E[X1 ⊗ X∗2 ] is an element of V1 ⊗ V∗2 . Let X be a centered random vector
in a Euclidean space V . The variance operator of X is defined as Var(X) =
Cov(X,X) = E[X⊗X∗] ∈ V ⊗V∗. Let Λ be a non-negative self-adjoint operator
on (V, 〈·, ·〉). We denote by X ∼ N (Λ) the fact that X is a centered Gaussian
vector with variance operator Λ. This means that the characteristic function of X
is ξ ֏ exp(− 1

2〈Λξ, ξ〉). Finally, we say that X ∈ V is a standard Gaussian vector
if X ∼N (Id), where Id is the identity operator on V .

If Λ is positive, the distribution of X ∼N (Λ) admits the density

(2.1) x ֏
1

√
2π

N√
det(Λ)

exp
(
−1

2
〈Λ−1x,x〉

)

with respect to the normalized Lebesgue measure of V , where N = dim(V). Oth-
erwise, X takes values in ker(Λ)⊥ almost surely, and it admits a similar density as
a variable in ker(Λ)⊥.

2.2. General setting. Let us introduce more precisely our geometric frame-
work. LetX be a smooth complex projective manifold of positive complex dimen-
sion n. Let cX be a real structure on X, that is, an anti-holomorphic involution.
The real locus of (X, cX) is the set M of fixed points of cX . In the following, we
assumeM is non-empty. It is known that M is a smooth closed submanifold of X
of real dimension n (see [32, Chapter 1]).

Let E → X be a holomorphic vector bundle of rank r ∈ {1, . . . , n}. We
denote by πE its bundle projection. Let cE be a real structure on E, compatible
with cX in the sense that cX ◦ πE = πE ◦ cE and cE is fiberwise C-anti-linear.
Let hE be a Hermitian metric on E such that c⋆E (hE) = hE . A Hermitian metric
satisfying this condition is said to be real. Similarly, let L → X be an ample
holomorphic line bundle equipped with a compatible real structure cL and a real
Hermitian metric hL.

We assume that (L, hL) has positive curvature, that is, its curvature formω is
Kähler. Recall that, if ζ0 is a local non-vanishing holomorphic section of L, then
ω = (1/(2i))∂ ∂̄ ln(hL(ζ0, ζ0)) locally. This Kähler form defines a Riemannian
metric g on X (see, e.g., [16, Section 0.2]). In turn, g induces a Riemannian
volume measure on X and on any smooth submanifold of X. We denote by
dVX = ωn/n! the Riemannian volume form on (X, g). Similarly, let |dVM |
denote the Riemannian measure on (M,g).

Let d ∈ N; then, we endow E ⊗ Ld with the real structure cd = cE ⊗ (cL)d,
which is compatible with cX , and the real Hermitian metric hd = hE ⊗ hdL.
Let Γ (E ⊗ Ld) denote the space of smooth sections of E ⊗ Ld; we then define a
Hermitian inner product on Γ (E ⊗Ld) by

(2.2) ∀ s1, s2 ∈ Γ (E ⊗Ld), 〈s1, s2〉 =
∫

X
hd(s1(x), s2(x))dVX .
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1658 THOMAS LETENDRE & MARTIN PUCHOL

Remark 2.1. In this paper, 〈·, ·〉 will either denote the inner product of a
Euclidean (or Hermitian) space or the duality pairing between a Banach space and
its topological dual. Which one should be clear from the context.

We say that a section s ∈ Γ (E ⊗ Ld) is real if it is equivariant for the real
structures, that is, cd ◦ s = s ◦ cX . We denote by RΓ (E⊗Ld) the real vector space
of real smooth sections of E ⊗ Ld. The restriction of 〈·, ·〉 to RΓ (E ⊗ Ld) is a
Euclidean inner product. Note that, despite their name, real sections are defined
on the whole complex locus X and that the Euclidean inner product is defined by
integrating over X, not just M .

Let x ∈ M ; then, the fiber (E ⊗Ld)x is a dimension r complex vector space,
and the restriction of cd to this space is a C-anti-linear involution. We denote by
R(E⊗Ld)x the set of fixed points of this involution, which is a real r -dimensional
vector space. Then, R(E ⊗ Ld) → M is a rank r real vector bundle, and, for any
s ∈ RΓ (E⊗Ld), the restriction of s to M is a smooth section of R(E⊗Ld)→ M .

LetH0(X,E⊗Ld) denote the space of global holomorphic sections of E⊗Ld.
This space is known to be finite dimensional (compare [23, Theorem 1.4.1]). Let
Nd denote the complex dimension of H0(X,E ⊗Ld). We denote by

RH0(X,E ⊗ Ld) = {s ∈ H0(X,E ⊗Ld) | cd ◦ s = s ◦ cX}

the space of global real holomorphic sections of E ⊗ Ld. The restriction of the
inner product (2.2) to RH0(X,E ⊗ Ld) (respectively, H0(X,E ⊗ Ld)) makes it
into a Euclidean (respectively, Hermitian) space of real (respectively, complex)
dimension Nd.

2.3. Random real algebraic submanifolds. This section is concerned with
the definition of the random submanifolds we consider and some related random
variables.

Let d ∈ N and s ∈ RH0(X,E ⊗ Ld). Then, we denote by Zs the real zero
set s−1(0) ∩M of s. If the restriction of s to M vanishes transversally, then Zs
is a smooth closed submanifold of codimension r of M (note that this includes
the case where Zs is empty). In this case, we denote by |dVs| the Riemannian
volume measure on Zs induced by g. In the following, we consider |dVs | as the
continuous linear form on (C0(M),‖ · ‖∞) defined by

∀φ ∈ C0(M), 〈|dVs|,φ〉 =
∫

x∈Zs
φ(x)|dVs |.

Definition 2.2 (compare [27]). We say that RH0(X,E ⊗ Ld) is 0-ample if,
for any x ∈ M , the evaluation map evdx : s ֏ s(x) from RH0(X,E ⊗ Ld) to
R(E ⊗ Ld)x is surjective.

Lemma 2.3. There exists d1 ∈ N, depending only on X, E, and L, such that for
all d á d1, RH0(X,E ⊗Ld) is 0-ample.
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Variance of the Volume of Random Real Algebraic Submanifolds II 1659

Proof. This can be deduced from the Riemann-Roch formula, for example. It
is also a byproduct of the computations of the present paper and will be proved
later on (see Corollary 5.11 below). ❐

Let us now consider a random section in RH0(X,E ⊗ Ld). Recall that
RH0(X,E ⊗ Ld), endowed with the inner product (2.2), is a Euclidean inner
product of dimension Nd.

Let sd be a standard Gaussian vector in RH0(X,E ⊗ Ld).
Lemma 2.4. For every d á d1, Zsd is almost surely a smooth closed codimension

r submanifold of M .

Proof. Since d á d1, we have that RH0(X,E⊗Ld) is 0-ample. By a transver-
sality argument (see [21, Section 2.6] for details), this implies that the restriction
of s to M vanishes transversally for almost every s ∈ RH0(X,E ⊗ Ld) (with re-
spect to the Lebesgue measure). Thus, almost surely, sd restricted to M vanishes
transversally, and its zero set is a smooth closed submanifold of codimension r . ❐

From now on, we only consider the case d á d1, so that Zsd is almost surely
a random smooth closed submanifold of M of codimension r . For simplicity, we
denote Zd = Zsd and |dVd| = |dVsd|. Let φ ∈ C0(M) and d á d1; then, the real
random variable 〈|dVd|,φ〉 is called the linear statistic of degree d associated with
φ. For example, 〈|dVd|,1〉 is the volume of Zd.

2.4. The correlation kernel. The random section sd ∈ RH0(X,E ⊗ Ld)
defines a centered Gaussian process (sd(x))x∈X , for any d ∈ N. In this section,
we recall the relation between the distribution of this process and the Bergman
kernel of E ⊗ Ld.

Recall that (E ⊗Ld)⊠ (E ⊗ Ld)∗ stands for the bundle

P⋆1 (E ⊗Ld)⊗ P⋆2 ((E ⊗Ld)∗)

over X ×X, where P1 (respectively, P2) denotes the projection from X ×X onto
the first (respectively, second) X factor. The distribution of (sd(x))x∈X is char-
acterized by its covariance kernel, that is, the section of (E ⊗ Ld) ⊠ (E ⊗ Ld)∗
defined by: (x,y)֏ Cov(sd(x), sd(y)) = E[sd(x)⊗ sd(y)∗].

Definition 2.5. Let Ed denote the Bergman kernel of E⊗Ld → X, that is, the
Schwartz kernel of the orthogonal projection from Γ (E⊗Ld) ontoH0(X,E⊗Ld).

Let (s1,d, . . . , sNd,d) be an orthonormal basis of RH0(X,E ⊗Ld). Then, it is
also an orthonormal basis of H0(X,E ⊗Ld). Recall that Ed is given by

Ed : (x,y) 7 -→
Nd∑

i=1

si,d(x)⊗ si,d(y)∗.
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1660 THOMAS LETENDRE & MARTIN PUCHOL

This shows that Ed is a real global holomorphic section of (E ⊗Ld)⊠ (E ⊗Ld)∗.
The following proves that the distribution of (sd(x))x∈X is totally described by
Ed.

Proposition 2.6 (compare [22, Proposition 2.6]). Let d ∈ N and let sd be a
standard Gaussian vector in RH0(X,E ⊗Ld). Then, for all x and y ∈ X, we have
Cov(sd(x), sd(y)) = Ed(x,y).

Thus, the Bergman kernel of E⊗Ld gives the correlations between the values
of the random section sd. By taking partial derivatives of this relation, we obtain
the correlations between the values of sd and its derivatives. More details about
what follows can be found in [22, Section 2.3].

Let ∇d be a metric connection on E ⊗ Ld. This induces a dual connection
(∇d)∗ on (E ⊗Ld)∗, which is compatible with the metric (cf. [16, Section 0.5]).
We can then define a natural metric connection ∇d1 on P⋆1 (E ⊗ Ld) → X × X
whose partial derivatives are ∇d with respect to the first variable, and the trivial
connection with respect to the second. Similarly, (∇d)∗ induces a metric con-
nection ∇d2 on P⋆2 ((E ⊗ Ld)∗), and ∇d1 ⊗ Id+ Id⊗∇d2 is a metric connection on
(E ⊗Ld)⊠ (E ⊗Ld)∗.

We denote by ∂x (respectively, ∂y ) the partial derivative of ∇d1 ⊗ Id+ Id⊗∇d2
with respect to the first (respectively, second) variable. Let

∂♯yEd(x,y) ∈ TyX ⊗ (E ⊗Ld)x ⊗ (E ⊗Ld)∗y

be defined by

∀w ∈ TyX, ∂♯yEd(x,y) ·w∗ = ∂yEd(x,y) ·w.

Similarly, let ∂x ∂
♯
yEd(x,y) ∈ T∗xX ⊗TyX⊗ (E ⊗Ld)x ⊗ (E ⊗Ld)∗y be defined

by

∀ (v,w) ∈ TxX × TyX,
∂x ∂

♯
yEd(x,y) · (v,w∗) = ∂x ∂yEd(x,y) · (v,w).

The following corollary was proved in [22, Corollary 2.13].

Corollary 2.7. Let d ∈ N, let ∇d be a metric connection on E ⊗Ld, and let sd
be a standard Gaussian vector in RH0(X,E ⊗ Ld). Then, for all x and y ∈ X, we
have

Cov(∇dxs, s(y)) = E[∇dxs ⊗ s(y)∗] = ∂xEd(x,y),
Cov(s(x),∇dys) = E[s(x)⊗ (∇dys)∗] = ∂♯yEd(x,y),
Cov(∇dxs,∇dys) = E[∇dxs ⊗ (∇dys)∗] = ∂x ∂♯yEd(x,y).
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Variance of the Volume of Random Real Algebraic Submanifolds II 1661

3. ESTIMATES FOR THE BERGMAN KERNEL

In this section, we recall useful estimates for the Bergman kernels. First, in Sub-
section 3.1 we recall the definition of a preferred trivialization of E ⊗ Ld → X.
Then, we state near-diagonal and off-diagonal estimates for a scaled version of Ed
in Subsections 3.2 and 3.3.

3.1. Real normal trivialization.

Notation 3.1. In the following, BA(a,R) denotes the open ball of center a
and radius R in the metric space A.

Let d ∈ N, and let us define a preferred trivialization of E ⊗ Ld in a neigh-
borhood of any point of M . The properties of this trivialization were studied in
Section 3.1 of [22]. Recall that the metric g on X is induced by the curvature
of (L, hL). Since hL is compatible with the real structures, cX is an isometry of
(X, g) (see [22, Section 2.1] for details).

Let R > 0 be such that 2R is less than the injectivity radius of X. Let also
x ∈ M ; then, the exponential map expx : BTxX(0,2R) → BX(x,2R) defines a
chart around x such that

dxcX = (expx)
−1 ◦ cX ◦ expx .

In particular, since TxM = ker(dxcX − Id), we have that expx induces a diffeo-
morphism from BTxM(0,2R) to BM(x,2R) that coincides with the exponential
map of (M,g) at x.

We can now trivialize E ⊗ Ld over BX(x,2R), by identifying each fiber with
(E ⊗ Ld)x by parallel transport along geodesics, with respect to the Chern con-
nection of E ⊗Ld. This defines a bundle map

ϕx : BTxX(0,2R)× (E ⊗Ld)x → (E ⊗Ld)/BX (x,2R)

that covers expx . We call this trivialization the real normal trivialization of E⊗Ld
around x.

Definition 3.2. A connection ∇d on E ⊗ Ld → X is said to be real if for
every smooth section s we have

∀y ∈ X, ∇dy(cd ◦ s ◦ cX) = cd ◦∇dcX (y)s ◦ dycX .

Such a connection induces a connection on R(E ⊗Ld)→ M by restriction.

Recall that cd denotes the real structure of E⊗Ld. Let cd,x denote its restric-
tion to (E ⊗ Ld)x ; then, we have that (dxcX , cd,x) is a C-anti-linear involution
of BTxX(0,2R)× (E ⊗Ld)x that is compatible with the real structure on the first
factor. Since the Chern connection of E ⊗ Ld is real (see [22, Lemma 3.4]), the
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1662 THOMAS LETENDRE & MARTIN PUCHOL

real normal trivialization is well behaved with respect to the real structures, in the
sense that for all z ∈ BTxX(0,2R) and ζ ∈ (E ⊗Ld)x ,

cd(ϕx(z, ζ)) = ϕx(dxcX · z, cd,x(ζ)).

Thus, ϕx can be restricted to a bundle map

BTxM(0,2R)×R(E ⊗Ld)x → R(E ⊗Ld)/BM (x,2R)

that covers expx .
Finally, it is known (cf. [22, Section 3.1]) that ϕx is a unitary trivialization

(i.e., its restriction to each fiber is an isometry). Similarly, its restriction to the real
locus is an orthogonal trivialization of R(E ⊗ Ld)/BM (x,2R).

The point is the following. The usual differentiation for maps from TxX to
(E⊗Ld)x defines locally a connection ∇̃d on (E⊗Ld)/BX (x,2R) via the real normal
trivialization. Since this trivialization is well behaved with respect to both the real
and the metric structures, ∇̃d is a real metric connection. Then, by a partition of
unity argument, there exists a global real metric connection ∇d on E ⊗ Ld that
agrees with ∇̃d on BX(x,R); that is, ∇d is trivial in the real normal trivialization,
in a neighborhood of x. The existence of such a connection will be useful in the
proof of our main theorem.

3.2. Near-diagonal estimates. In this section, we state estimates for a scaled
version of the Bergman kernel in a neighborhood of the diagonal ofM ×M . As in
the previous section, let R > 0 be such that 2R is less than the injectivity radius of
X. Let x ∈ M ; then, the real normal trivialization ϕx induces a trivialization of
(E⊗Ld)⊠ (E⊗Ld)∗ over BX(x,2R)×BX(x,2R) that covers expx × expx . This
trivialization agrees with the real normal trivialization of (E ⊗ Ld) ⊠ (E ⊗ Ld)∗
around (x,x).

In the normal chart expx , we note that the Riemannian measure dVX admits
a positive density with respect to the Lebesgue measure of (TxX, gx), denoted by
κ : BTxX(0,2R) → R+. Then, in the chart expx : BTxM(0,2R) → BM(x,2R), the
density of |dVM | with respect to the Lebesgue measure of (TxM,gx) is

√
κ.

Let us identify Ed with its expression in the real normal trivialization of (E ⊗
Ld) ⊠ (E ⊗ Ld)∗ around (x,x). Thus, the restriction of Ed to the real locus is
a map from TxM × TxM to End(R(E ⊗ Ld)x). Then, by [10, Theorem 4.18’]
(see also [22, Theorem 3.5] for a statement with the same notation as the present
paper), we get the following estimate for Ed and its derivatives of order at most 6.

Theorem 3.3 (Dai-Liu-Ma). There exist C1 and C2 > 0, such that, for all
k ∈ {0,1, . . . ,6}, all d ∈ N∗, all x ∈M , and all w,z ∈ BTxM(0, R),

∥∥∥∥∥D
k
(w,z)

(
Ed(w, z) −

(
d

π

)n exp(−(d/2)‖z −w‖2)√
κ(w)

√
κ(z)

IdR(E⊗Ld)x

)∥∥∥∥∥

à C1d
n+k/2−1(1+

√
d(‖w‖ + ‖z‖))2n+12 exp(−C2

√
d‖z −w‖)+O(d−∞),
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Variance of the Volume of Random Real Algebraic Submanifolds II 1663

where Dk is the k-th differential for a map from TxM × TxM to End(R(E ⊗Ld)x),
the norm on TxM is induced by gx , and the norm on (T∗xM)

⊗k ⊗ End((E ⊗Ld)x)
is induced by gx and (hd)x .

The notation O(d−∞) means that, for any ℓ ∈ N, this term is O(d−ℓ) with a
constant that does not depend on x, w, z, nor d.

Recall that x is fixed. We denote by ed the following scaled version of the
Bergman kernel around x:

∀w,z ∈ BTxM(0,2R
√
d),(3.1)

ed(w, z) =
(
π

d

)n
Ed

(
expx

(
w√
d

)
, expx

(
z√
d

))
.

We consider ed as a map with values in End(R(E ⊗ Ld)x) using the real normal
trivialization around x. Note that ed highly depends on x, even if this is not
reflected in the notation. In the following, the base point x will always be clear
from the context.

Let ξ : Rn×Rn → R be defined by ξ(w, z) = exp(− 1
2‖w−z‖2), where ‖ ·‖

is the usual Euclidean norm. Let x ∈ M ; then, any isometry from TxM to Rn

allows us to see ξ as a map from TxM × TxM to R. Let bn be a positive constant
depending only on n and whose value will be chosen later on. Then, using the
same notation as in Theorem 3.3 we get the following.

Proposition 3.4. Let α ∈ (0,1); then, there exists C > 0, depending only on
α, n, and the geometry of X, such that ∀k ∈ {0,1, . . . ,6}, ∀d ∈ N∗, ∀x ∈ M ,
∀w,z ∈ BTxM(0, bn lnd). We have

‖Dk(w,z)ed − (Dk(w,z)ξ) IdR(E⊗Ld)x ‖ à Cd−α.

Proof. First, we apply Theorem 3.3 for the scaled kernel ed. This yields that,
for all k ∈ {0,1, . . . ,6}, all d ∈ N∗, all x ∈M , and all w,z ∈ BTxM(0, bn lnd),

∥∥∥∥∥D
k
(w,z)

(
ed(w, z) −

ξ(w, z)√
κ̃(w)κ̃(z)

IdR(E⊗Ld)x

)∥∥∥∥∥

à
C1

d
(1+ 2bn lnd)2n+12 +O(d−∞) = O(d−α),

where κ̃ : z ֏ κ(z/
√
d). Since we used normal coordinates to define κ, the

following relations hold uniformly on BTxX(0, R):

κ(z) = 1+O(‖z‖2), Dzκ = O(‖z‖) and ∀k ∈ {2, . . . ,6}, Dkzκ = O(1).

By compactness, these estimates can be made independent of x ∈ M . Then,
we obtain the following estimates for κ̃ and its derivatives, uniformly in x ∈ M
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1664 THOMAS LETENDRE & MARTIN PUCHOL

and z ∈ BTxM(0, bn lnd):

κ̃(z) = 1+O
(
(bn lnd)2

d

)
, Dzκ̃ = O

(
bn lnd
d

)

and ∀k ∈ {2, . . . ,6}, Dkzκ̃ = O
(

1
d

)
.

Therefore, for all k ∈ {0,1, . . . ,6}, for all d ∈ N∗, for all x ∈ M , and for all
w,z ∈ BTxM(0, bn lnd),

∥∥∥∥∥D
k
(w,z)

(
ξ(w, z)√
κ̃(w)κ̃(z)

)
−D

k
(w,z)ξ

∥∥∥∥∥ = O(d
−α). ❐

We will use the expressions of some of the partial derivatives of ξ. Let us
choose any orthonormal basis of TxM and denote by ∂xi (respectively, ∂yi) the
partial derivative with respect to the i-th component of the first (respectively, sec-
ond) variable.

Lemma 3.5. Let i, j ∈ {1, . . . , n}.
For all w = (w1, . . . ,wn) and z = (z1, . . . , zn) ∈ TxM , we have

∂xiξ(w, z) = −(wi − zi) exp
(
−1

2
‖w − z‖2

)
,

∂yjξ(x,y) = (wj − zj) exp
(
−1

2
‖w − z‖2

)
,

and

∂xi ∂yjξ(x,y) = (δij − (wi − zi)(wj − zj)) exp
(
−1

2
‖w − z‖2

)
,

where δij equals 1 if i = j and 0 otherwise.

Proof. This is given by a direct computation. ❐

3.3. Off-diagonal estimates. Finally, let us recall estimates quantifying the
long range decay of the Bergman kernel Ed. These estimates were proved by Ma
and Marinescu in [24, Theorem 5].

Let S be a smooth section of R(E⊗Ld)⊠R(E⊗Ld)∗, and let x,y ∈ M . De-
note by ‖S(x,y)‖Ck the maximum of the norms of S and its derivatives of order
at most k at (x,y) ∈ M ×M , where the derivatives of S are computed with re-
spect to the connection induced by the Chern connection of E⊗Ld and the Levi-
Civita connection on M . The norms are the natural ones induced by hd and g.

Theorem 3.6 (Ma-Marinescu). There exist d0 ∈ N∗, and positive constants
C1 and C2 such that, for all k ∈ {0,1,2}, all d á d0, and all x,y ∈M , we have

‖Ed(x,y)‖Ck à C1d
n+k/2 exp(−C2

√
dρg(x,y)),

where ρg(·, ·) denotes the geodesic distance in (M,g).
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4. PROPERTIES OF THE LIMIT DISTRIBUTION

The estimates of Section 3.2 show that the family (sd(x))x∈M of random fields
has a local scaling limit around any point x ∈ M , as d goes to infinity. Moreover,
the limit field does not depend on x. The limit is a Gaussian centered random
process from Rn to Rr whose correlation kernel is e∞ : (w, z) ֏ ξ(w, z)Ir ,
where Ir stands for the identity of Rr and ξ was defined in Section 3.2. This limit
process is known as the Bargmann-Fock process.

The goal of this section is to establish some properties of the Bargmann-Fock
process. These results will be useful in the next section to prove that, for d large
enough, the local behavior of sd around any given x ∈ M is the same as that of
the limit process.

In the following, we denote by (s(z))z∈Rn a copy of the Bargmann-Fock
process. Since ξ is smooth, we can assume the trajectories of s are smooth. Note
that s is both stationary and isotropic. Moreover, since e∞ = ξIr , the field s
is just a tuple of r independent identically distributed centered Gaussian fields
whose correlation kernel is ξ.

4.1. Variance of the values. The first thing we want to understand about s
is the distribution of (s(0), s(z)) ∈ Rr ⊕ Rr for any z ∈ Rn. In the following,
we canonically identify Rr ⊕Rr with R2 ⊗Rr .

Let z ∈ Rn; then, (s(0), s(z)) is a centered Gaussian vector in R2 ⊗Rr with
variance operator

Θ(z) =
(
e∞(0,0) e∞(0, z)
e∞(z,0) e∞(z, z)

)
=
(
ξ(0,0)Ir ξ(0, z)Ir
ξ(z,0)Ir ξ(z, z)Ir

)
(4.1)

=
(

1 e−(1/2)‖z‖
2

e−(1/2)‖z‖
2

1

)
⊗ Ir .

Let Q = (1/
√

2)
(

1 −1
1 1

)
∈ O2(R) denote the rotation of angle π/4 in R2. We

can explicitly diagonalize Θ(z) as follows.

Lemma 4.1. For any z ∈ Rn we have the following:

(Q ⊗ Ir )Θ(z)(Q ⊗ Ir )−1 =
(

1− e−(1/2)‖z‖2
0

0 1+ e−(1/2)‖z‖2

)
⊗ Ir .

Proof. Since (Q ⊗ Ir)−1 = Qt ⊗ Ir , by equation (4.1), it is enough to notice
that

Q

(
1 e−(1/2)‖z‖

2

e−(1/2)‖z‖
2

1

)
Qt =

(
1− e−(1/2)‖z‖2

0
0 1+ e−(1/2)‖z‖2

)
. ❐

Lemma 4.2. For all z ∈ Rn, det(Θ(z)) = (1 − e−‖z‖2
)r . In particular, the

distribution of (s(0), s(z)) is non-degenerate for all z ∈ Rn \ {0}.
Proof. We take the determinant of both sides in equation (4.1). ❐
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1666 THOMAS LETENDRE & MARTIN PUCHOL

4.2. Variance of the 1-jets. Let us now study the variance structure of the
1-jets of s. For any z ∈ Rn, we know that (s(0), s(z), d0s, dzs) is a centered
Gaussian vector in

R
r ⊕Rr ⊕ ((Rn)∗ ⊗Rr )⊕ ((Rn)∗ ⊗Rr) ≃ (R⊕R⊕ (Rn)∗ ⊕ (Rn)∗)⊗Rr .

Our goal in this section is to better understand its variance operator Ω(z). In
the following, we write Ω(z) by blocks according to the previous splitting. Let ∂x
(respectively, ∂y ) denote the partial derivative with respect to the first (respectively,

second) variable for maps from Rn ×Rn to End(Rr). Let us also define ∂♯y as in
Subsection 2.4. Then, we have

Ω(z) =




e∞(0,0) e∞(0, z) ∂♯ye∞(0,0) ∂♯ye∞(0, z)

e∞(z,0) e∞(z, z) ∂♯ye∞(z,0) ∂♯ye∞(z, z)

∂xe∞(0,0) ∂xe∞(0, z) ∂x ∂
♯
ye∞(0,0) ∂x ∂

♯
ye∞(0, z)

∂xe∞(z,0) ∂xe∞(z, z) ∂x ∂
♯
ye∞(z,0) ∂x ∂

♯
ye∞(z, z)




(4.2)

= Ω′(z)⊗ Ir ,
where

Ω′(z) =




ξ(0,0) ξ(0, z) ∂♯yξ(0,0) ∂♯yξ(0, z)

ξ(z,0) ξ(z, z) ∂♯yξ(z,0) ∂♯yξ(z, z)

∂xξ(0,0) ∂xξ(0, z) ∂x ∂
♯
yξ(0,0) ∂x ∂

♯
yξ(0, z)

∂xξ(z,0) ∂xξ(z, z) ∂x ∂
♯
yξ(z,0) ∂x ∂

♯
yξ(z, z)



.

Let (∂/∂x1, . . . , ∂/∂xn) be any orthonormal basis of Rn such that we have
z = ‖z‖ ∂/∂x1, and let (dx1, . . . ,dxn) denote its dual basis. Let (e1, e2) denote
the canonical basis of R2; we denote by Bz the following orthonormal basis of
R

2 ⊗ (R⊕ (Rn)∗) ≃ R⊕R⊕ (Rn)∗ ⊕ (Rn)∗:

Bz = (e1 ⊗ 1, e2 ⊗ 1, e1 ⊗ dx1, e2 ⊗ dx1, . . . , e1 ⊗ dxn, e2 ⊗ dxn).

Lemma 4.3. For any z ∈ Rn, the matrix of Ω′(z) in the basis Bz is




Ω̃(‖z‖2) 0

0


 1 e−(1/2)‖z‖

2

e−(1/2)‖z‖
2

1


⊗ In−1


 ,

where In−1 is the identity matrix of size n− 1 and, for all t á 0, we set

(4.3) Ω̃(t) =




1 e−(1/2)t 0 −
√
te−(1/2)t

e−(1/2)t 1
√
te−(1/2)t 0

0
√
te−(1/2)t 1 (1− t)e−(1/2)t

−
√
te−(1/2)t 0 (1− t)e−(1/2)t 1



.

This content downloaded from 
�������������195.221.160.9 on Wed, 19 Feb 2025 09:06:25 UTC������������� 

All use subject to https://about.jstor.org/terms



Variance of the Volume of Random Real Algebraic Submanifolds II 1667

Proof. A direct computation, by using the fact that z = (‖z‖,0, . . . ,0) in the
basis (∂/∂x1, . . . , ∂/∂xn), yields the result. Recall that the partial derivatives of ξ
are given by Lemma 3.5. ❐

Let z ∈ Rn, and recall that z∗ ∈ (Rn)∗ was defined as z∗ = 〈·, z〉, where
〈·, ·〉 is the canonical scalar product of Rn. We denote by z∗ ⊗ z ∈ End((Rn)∗)
the map η ֏ η(z)z∗. Then, from Lemma 4.3 we see that, as an operator on
R⊕R⊕ (Rn)∗ ⊕ (Rn)∗,

(4.4) Ω′(z)

=




1 e−(1/2)‖z‖
2

0 −e−(1/2)‖z‖2
z

e−(1/2)‖z‖
2

1 e−(1/2)‖z‖
2
z 0

0 e−(1/2)‖z‖
2
z∗ In e−(1/2)‖z‖

2
(In − z∗ ⊗ z)

−e−(1/2)‖z‖2
z∗ 0 e−(1/2)‖z‖

2
(In − z∗ ⊗ z) In



,

where z∗ is to be understood as the constant map t ֏ z∗ from R to (Rn)∗, z is
to be understood as the evaluation at the point z from (Rn)∗ to R, and In is the
identity of Rn. Indeed, both sides of (4.4) have the same matrix in the basis Bz.

We will now diagonalize explicitly Ω(z), as we did for Θ(z) in the previous
section. The main step is to diagonalize Ω̃(z).

Definitions 4.4. We denote by v1, v2, v3, v4, and a the following functions
from [0,+∞) to R:

v1 : t 7 -→ 1− e−(1/2)t
(
t

2
−
√

1+
( t

2

)2
)
,

v2 : t 7 -→ 1− e−(1/2)t
(
t

2
+
√

1+
( t

2

)2
)
,

v3 : t 7 -→ 1+ e−(1/2)t
(
t

2
−
√

1+
( t

2

)2
)
,

v4 : t 7 -→ 1+ e−(1/2)t
(
t

2
+
√

1+
( t

2

)2
)
,

a : t 7 -→
1− t

2√

1+
(
t

2

)2
.

Note that, for all t á 0, |a(t)| à 1, so that the following makes sense.
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1668 THOMAS LETENDRE & MARTIN PUCHOL

Definitions 4.5. Let b+ : t ֏
√

1+ a(t) and b− : t ֏
√

1− a(t) from
[0,+∞) to R. For all t á 0, let us also denote

P(t) = 1
2




b−(t) −b−(t) −b+(t) −b+(t)
b+(t) −b+(t) b−(t) b−(t)

b−(t) b−(t) −b+(t) b+(t)
b+(t) b+(t) b−(t) −b−(t)



.

One can check that, for all t á 0, P(t) is an orthogonal matrix.

Lemma 4.6. For every t ∈ [0,+∞), we have

P(t)Ω̃(t)P(t)−1 =




v1(t) 0 0 0

0 v2(t) 0 0

0 0 v3(t) 0

0 0 0 v4(t)



.

Proof. See Appendix A. ❐

Corollary 4.7. Let z ∈ Rn. Identifying Ω′(z) with its matrix in Bz, we have


P(‖z‖

2) 0

0 Q⊗ In−1


Ω′(z)


P(‖z‖

2) 0

0 Q⊗ In−1



−1

=




v1(‖z‖2) 0 0 0

0 v2(‖z‖2) 0 0

0 0 v3(‖z‖2) 0

0 0 0 v4(‖z‖2)

0

0


1− e−(1/2)‖z‖2

0

0 1+ e−(1/2)‖z‖2


⊗ In−1




.

By equation (4.2), we get a diagonalization of Ω(z) by tensoring each factor
by Ir in Corollary 4.7.

Lemma 4.8. For all z ∈ Rn \ {0}, we have det(Ω(z)) > 0. That is, the
distribution of (s(0), s(z), d0s, dzs) is non-degenerate.

Proof. See Appendix A. ❐

4.3. Conditional variance of the derivatives. The next step is to study
the conditional distribution of (d0s, dzs) given that s(0) = 0 = s(z), for any
z ∈ Rn \ {0}. Recall that (s(0), s(z), d0s, dzs) is a centered Gaussian vector
with variance Ω(z) (see equation (4.2)). Moreover, if z ≠ 0, the distribution of
(s(0), s(z)) is non-degenerate by Lemma 4.2.
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Variance of the Volume of Random Real Algebraic Submanifolds II 1669

Thus, (d0s, dzs) given that s(0) = 0 = s(z) is a centered Gaussian vector in
((Rn)∗ ⊕ (Rn)∗)⊗Rr with variance operator

Λ(z) =

∂x ∂

♯
ye∞(0,0) ∂x ∂

♯
ye∞(0, z)

∂x ∂
♯
ye∞(z,0) ∂x ∂

♯
ye∞(z, z)




−

∂xe∞(0,0) ∂xe∞(0, z)
∂xe∞(z,0) ∂xe∞(z, z)




e∞(0,0) e∞(0, z)
e∞(z,0) e∞(z, z)



−1

×

∂

♯
ye∞(0,0) ∂

♯
ye∞(0, z)

∂♯ye∞(z,0) ∂
♯
ye∞(z, z)


 .

By (4.2) and (4.4), for all z ∈ Rn \ {0}, we have Λ(z) = Λ′(z)⊗ Ir , where

(4.5) Λ′(z)

=




In −
e−‖z‖

2

1− e−‖z‖2 z
∗ ⊗ z e−(1/2)‖z‖

2
(
In −

1

1− e−‖z‖2 z
∗ ⊗ z

)

e−(1/2)‖z‖
2
(
In −

1
1− e−‖z‖2 z

∗ ⊗ z
)

In −
e−‖z‖

2

1− e−‖z‖2 z
∗ ⊗ z




As in the previous section, let us denote by (∂/∂x1, . . . , ∂/∂xn) an orthonor-
mal basis of Rn such that z = ‖z‖ ∂/∂x1, and let (dx1, . . . ,dxn) denote its dual
basis. Let (e1, e2) denote the canonical basis of R2. We define B′z to be the fol-
lowing orthonormal basis of R2 ⊗ (Rn)∗ ≃ (Rn)∗ ⊕ (Rn)∗:

B′z = (e1 ⊗ dx1, e2 ⊗ dx1, . . . , e1 ⊗ dxn, e2 ⊗ dxn).

Lemma 4.9. For any z ∈ Rn \ {0}, the matrix of Λ′(z) in the basis B′z is



Λ̃(‖z‖2) 0

0


 1 e−(1/2)‖z‖

2

e−(1/2)‖z‖
2

1


⊗ In−1


 ,

where, for all t > 0, we set

Λ̃(t) =




1− te−t

1− e−t e−(1/2)t
(

1− t

1− e−t
)

e−(1/2)t
(

1− t

1− e−t
)

1− te−t

1− e−t


 .

Proof. Since z = ‖z‖ ∂/∂x1, we have z∗ ⊗ z = ‖z‖2 dx1 ⊗ ∂/∂x1. Hence,
the matrix of z∗ ⊗ z in (dx1, . . . ,dxn) is


‖z‖

2 0

0 0


 .

Then, the conclusion follows from equation (4.5). ❐
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1670 THOMAS LETENDRE & MARTIN PUCHOL

Remark 4.10. We can extend continuously Λ̃ at t = 0 by setting Λ̃(0) = 0.
This yields continuous extensions of Λ′ and Λ at z = 0. Note that Λ(0) is not the
variance operator of (d0s, d0s) given that s(0) = 0.

Definitions 4.11. Let u1, u2 denote the following functions from R to R:

u1 : t 7 -→ 1− e−t + te−(1/2)t
1+ e−(1/2)t , u2 : t 7 -→





1− e−t − te−(1/2)t
1− e−(1/2)t if t ≠ 0,

0 if t = 0.

Once again, we will need an explicit diagonalization of Λ(z). Such a diago-
nalization is given by the following lemma, once we tensor each factor by Ir .

Lemma 4.12. Let z ∈ Rn. Identifying Λ′(z) with its matrix in B′z, we have

(Q⊗ In)Λ′(z)(Q⊗ In)−1

=




u1(‖z‖2) 0

0 u2(‖z‖2)
0

0


1− e−(1/2)‖z‖2

0

0 1+ e−(1/2)‖z‖2


⊗ In−1



.

Proof. By Lemma 4.9, we only need to check that, for all t á 0,

QΛ̃(t)Qt =

u1(t) 0

0 u2(t)


 . ❐

Lemma 4.13. For all z ∈ Rn \ {0}, we have det(Λ(z)) > 0, that is, the
distribution of (d0s, dzs) given that s(0) = 0 = s(z) is non-degenerate.

Proof. See Appendix A. ❐

By Lemma 4.8, Ω(z) is a positive self-adjoint operator on

(R⊕R⊕ (Rn)∗ ⊕ (Rn)∗)⊗Rr ,

for all z ∈ Rn \ {0}, and so is its inverse. Hence, Ω(z)−1 admits a unique positive
square root, which we denote by Ω(z)−1/2. Similarly, by Lemma 4.13, Λ(z) is a
positive self-adjoint operator on ((Rn)∗⊕(Rn)∗)⊗Rr , and we denote by Λ(z)1/2
its positive square root.

Lemma 4.14. The map z 7 -→ (0 Λ(z)1/2)Ω(z)−1/2 is bounded on Rn \ {0}.
Proof. See Appendix A. ❐

4.4. Finiteness of the leading constant. The goal of this section is to prove
that the constant In,r defined by equation (1.2) and appearing in Theorem 1.6 is
well defined and finite.
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Variance of the Volume of Random Real Algebraic Submanifolds II 1671

Definition 4.15. Let n ∈ N∗ and r ∈ {1, . . . , n}. For every t > 0 we set

Dn,r (t) =
E
[
|det⊥(X(t))| |det⊥(Y(t))|

]

(1− e−t)r/2 − (2π)r
(

Vol(Sn−r )
Vol(Sn)

)2

,

where (X(t), Y(t)) is the centered Gaussian vector inMrn(R)×Mrn(R) defined
in Definition 1.5.

By the definition of In,r (see equation (1.2)), we have

In,r =
1
2

∫ +∞

0
Dn,r (t)t

(n−2)/2
dt.

Hence, we must prove t ֏ Dn,r (t)t(n−2)/2 is integrable on (0,+∞), which boils
down to computing the asymptotic expansions of E

[
|det⊥(X(t))| |det⊥(Y(t))|

]

as t → 0 and as t → +∞.
Let us now relate this to the Bargmann-Fock process (s(z))z∈Rn .

Lemma 4.16. Let z ∈ Rn \ {0}. Let (∂/∂x1, . . . , ∂/∂xn) be an orthonormal
basis of Rn such that z = ‖z‖ ∂/∂x1, and let (ζ1, . . . , ζr ) be any orthonormal
basis of Rr . Then, the matrices of d0s and dzs in these bases, given that s(0) =
0 = s(z), form a random vector in Mrn(R) × Mrn(R) which is distributed as
(X(‖z‖2), Y(‖z‖2)).

Proof. Let us denote by X̃(z) and Ỹ (z) the matrices of d0s and dzs in the
bases (∂/∂x1, . . . , ∂/∂xn) and (ζ1, . . . , ζr ), given that s(0) = 0 = s(z). We
denote by X̃ij(z) (respectively, Ỹij(z)) the coefficients of X̃ (respectively, Ỹ ) for
i ∈ {1, . . . , r} and j ∈ {1, . . . , n}. By Lemma 4.9, the couples (X̃ij , Ỹij) are cen-
tered Gaussian vectors in R2 which are independant from one another. Moreover,
the variance matrix of (X̃ij(z), Ỹij(z)) equals

Λ̃(‖z‖2) if j = 1,

and 
 1 e−(1/2)‖z‖

2

e−(1/2)‖z‖
2

1


 otherwise.

By Definition 1.5, this is precisely saying that (X̃(z), Ỹ (z)) is distributed as
(X(‖z‖2), Y(‖z‖2)). ❐

Lemma 4.17. Let n ∈ N∗ and r ∈ {1, . . . , n}. Then, as t → 0, we have the
following:

E
[
|det⊥(X(t))| |det⊥(Y(t))|

]
∼





(n− 1)!
(n− r − 1)!

if r < n,

n!
2
t if r = n.
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1672 THOMAS LETENDRE & MARTIN PUCHOL

Proof. See Appendix A. ❐

Lemma 4.18. For all n ∈ N∗ and r ∈ {1, . . . , n}, we have the following as
t → +∞:

E
[
|det⊥(X(t))| |det⊥(Y(t))|

]
= (2π)r

(
Vol(Sn−r )
Vol(Sn)

)2

+O(te−t/2).

Proof. See Appendix A. ❐

Lemmas 4.17 and 4.18 and the definition of Dn,r (Definition 4.15) allow us
to derive the following.

Corollary 4.19. Let n ∈ N∗ and r ∈ {1, . . . , n}; then, we have

t(n−2)/2
Dn,r (t) =




O

(
1√
t

)
as t → 0,

O(e−t/4) as t → +∞.

In particular, In,r = 1
2

∫ +∞

0
Dn,r (t)t(n−2)/2 dt is well defined and finite.

5. PROOF OF THEOREM 1.6

This section is concerned with the proof of our main result (Theorem 1.6). Recall
thatX is a compact Kähler manifold of complex dimensionn á 1 defined over the
reals, and thatM denotes its real locus, assumed to be non-empty. Let E → X be a
rank r ∈ {1, . . . , n} real Hermitian vector bundle and L → X be a real Hermitian
line bundle whose curvature form isω, the Kähler form of X. We assume that E
and L are endowed with compatible real structures. For all d ∈ N, we still denote
by Ed the Bergman kernel of E ⊗ Ld. Finally, let sd denote a standard Gaussian
vector in RH0(X,E ⊗ Ld), whose real zero set is denoted by Zd, and let |dVd|
denote the Riemannian volume measure on Zd.

In Subsection 5.1, we recall Kac-Rice formulas and use them to derive an
integral expression of Var(|dVd|). Subsection 5.2 is concerned with the study of
some relevant random variables related to (sd(x))x∈M . Finally, we conclude the
proof in two steps, in Subsections 5.3 and 5.4.

5.1. Kac-Rice formulas In this section, we use Kac-Rice formulas to de-
rive an integral expression of Var(|dVd|). Classical references for this material
are [1, Chapter 11.5] and [3, Theorem 6.3]. Since our probability space is the
finite-dimensional vector space RH0(X,E ⊗Ld), it is possible to derive Kac-Rice
formulas under weaker hypothesis than those given in [1] and [3]. This uses Fed-
erer’s coaera formula and the so-called double fibration trick (see [21, Appendix
C] and the references therein). The first Kac-Rice formula we state (Theorem 5.1
below) was proved in [21, Theorem 5.3], and the second (Theorem 5.5 below)
was proved in [22, Theorem 4.4].
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Variance of the Volume of Random Real Algebraic Submanifolds II 1673

Recall that the Jacobian |det⊥(L)| of an operator L was defined in Defini-
tion 1.4, that d1 was defined in Lemma 2.3, and that a connection is said to be
real if it satisfies the condition given in Definition 3.2.

Theorem 5.1 (Kac-Rice formula 1). Let d á d1, let∇d be any real connection
on E ⊗Ld, and let sd ∼N (Id) in RH0(X,E ⊗ Ld). Then, for all φ ∈ C0(M),

E

[∫

x∈Zd
φ(x) |dVd|

]
(5.1)

= (2π)−r/2
∫

x∈M

φ(x)

|det⊥(evdx)|
E
[
|det⊥(∇dxsd)| : sd(x) = 0

]
|dVM |.

The expectation on the righthand side of equation (5.1) is to be understood as the
conditional expectation of |det⊥(∇dxsd)| given that sd(x) = 0.

Notation 5.2. Let ∆ = {(x,y) ∈M2 | x = y} denote the diagonal of M2.

Definition 5.3. Let d ∈ N and let (x,y) ∈ M2 \ ∆; we denote by evdx,y the
evaluation map

evdx,y : RH0(X,E ⊗ Ld) -→ R(E ⊗Ld)x ⊕R(E ⊗Ld)y ,
s 7 -→ (s(x), s(y)).

Lemma 5.4. There exists d2 ∈ N, such that for all (x,y) ∈ M2 \ ∆, evdx,y is
surjective.

This was proved in [22, Proposition 4.2] in the case r < n, by using Kodaira’s
embedding theorem. The proof can be adapted verbatim to the case r à n.
We will give an alternative proof using only estimates on the Bergman kernel
(Lemmas 5.23 and 5.26) (see p. 1684 below).

Theorem 5.5 (Kac-Rice formula 2). Let d á d2, let∇d be any real connection
on E ⊗ Ld, and let sd ∼ N (Id) in RH0(X,E ⊗ Ld). Then, we have that, for all
φ1 and φ2 ∈ C0(M),

E

[∫

(x,y)∈(Zd)2\∆
φ1(x)φ2(y) |dVd|2

]
(5.2)

= 1
(2π)r

∫

(x,y)∈M2\∆

φ1(x)φ2(y)

|det⊥(evdx,y)|
× E

[
|det⊥(∇dxsd)| |det⊥(∇dysd)| : evdx,y(sd) = 0

]
|dVM |2.

Here, |dVM |2 (respectively, |dVd|2) stands for the product measure onM2 (respectively,
(Zd)2) induced by |dVM | (respectively |dVd|). The expectation on the righthand side
of equation (5.2) is the conditional expectation of

|det⊥(∇dxsd)| |det⊥(∇dysd)|,

given that evdx,y(sd) = 0.

This content downloaded from 
�������������195.221.160.9 on Wed, 19 Feb 2025 09:06:25 UTC������������� 

All use subject to https://about.jstor.org/terms



1674 THOMAS LETENDRE & MARTIN PUCHOL

Proof. This formula was proved in [22, Theorem 4.4] in the case 1 à r < n.
The hypothesis r < n does not appear in the proof and can be changed to r à n
without any other modification. ❐

Definition 5.6. Let d á max(d1, d2), and let ∇d be any real connection on
E ⊗Ld. We denote by Dd : M2 \∆→ R the map defined by

Dd(x,y) =
(
E
[
|det⊥(∇dxsd)| |det⊥(∇dysd)| : sd(x) = 0 = sd(y)

]

|det⊥(evdx,y)|

−
E
[
|det⊥(∇dxsd)| : sd(x) = 0

]
E
[
|det⊥(∇dysd)| : sd(y) = 0

]

|det⊥(evdx)| |det⊥(evdy)|

)
.

Remark 5.7. Note that Dd does not depend on the choice of ∇d. Indeed,
we only consider derivatives of sd at points where it vanishes.

Proposition 5.8. For all d á max(d1, d2), we have for any φ1,φ2 ∈ C0(M)

Var(|dVd|)(φ1,φ2) =
1

(2π)r

∫

M2\∆
φ1(x)φ2(y)Dd(x,y) |dVM |2

+ δrnE[〈|dVd|,φ1φ2〉],

where δrn equals 1 if r = n and 0 otherwise.

Proof. This was proved in [22, Section 4.2] for r < n (the case r = n requires
an extra argument). The following proof is valid for any r ∈ {1, . . . , n}. Let φ1

and φ2 ∈ C0(M); we have

Var(|dVd|)(φ1,φ2) = E[〈|dVd|,φ1〉〈|dVd|,φ2〉](5.3)

− E[〈|dVd|,φ1〉]E[〈|dVd|,φ2〉].

Since Zd has almost surely dimension n− r , the diagonal in Zd ×Zd is negligible
if and only if r < n. Moreover, if r = n then both |dVd| and |dVd|2 are counting
measures. Then,

〈|dVd|,φ1〉〈|dVd|,φ2〉 =
∫

(x,y)∈(Zd)2
φ1(x)φ2(y) |dVd|2

=
∫

(x,y)∈(Zd)2\∆
φ1(x)φ2(y) |dVd|2 + δrn

∫

x∈Zd
φ1(x)φ2(x) |dVd|,

almost surely. Hence,

E[〈|dVd|,φ1〉〈|dVd|,φ2〉](5.4)

= E
[∫

(x,y)∈(Zd)2\∆
φ1(x)φ2(y) |dVd|2

]
+ δrnE[〈|dVd|,φ1φ2〉].
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Variance of the Volume of Random Real Algebraic Submanifolds II 1675

We apply Theorem 5.5 to the first term on the righthand side of equation (5.4).
Similarly, we apply Theorem 5.1 to E[〈|dVd|,φi〉] for i ∈ {1,2}. This yields the
result by equation (5.3). ❐

By Theorem 1.2, if r = n, for all φ1,φ2 ∈ C0(M) we have

E[〈|dVd|,φ1φ2〉]

= dn/2 2
Vol(Sn)

(∫

M
φ1φ2 |dVM |

)
+ ‖φ1‖∞ ‖φ2‖∞O(dn/2−1).

Hence, in order to prove Theorem 1.6, we have to show that, for any n ∈ N∗ and
r ∈ {1, . . . , n},

(5.5)
∫

M2\∆
φ1(x)φ2(y)Dd(x,y) |dVM |2

= dr−n/2
(∫

M
φ1φ2 |dVM |

)
Vol(Sn−1)In,r

+ ‖φ1‖∞ ‖φ2‖∞O(dr−n/2−α)+‖φ1‖∞̟φ2(Cβd
−β)O(dr−n/2),

where α, β, Cβ, and In,r are as in Theorem 1.6.
This is done in two steps. The mass of the integral on the lefthand side of

equation (5.5) concentrates in a neighborhood of ∆ of typical size 1/
√
d. More

specifically, let us now fix the value of the constant bn appearing in Proposi-
tion 3.4.

Definitions 5.9. We set bn = (1/C2)(n/2+1), where C2 > 0 is the constant
appearing in the exponential in Theorem 3.6. Moreover, for all d ∈ N

∗, we
denote

∆d =
{
(x,y) ∈M2 | ρg(x,y) < bn

lnd√
d

}
,

where, ρg is the geodesic distance in (M,g).

In Section 5.3 below, we show that, in equation (5.5), the integral overM2\∆d
only contributes what turns out to be an error term. We refer to this term as the
far off-diagonal term. In Subsection 5.4 we complete the proof of (5.5) by studying
the near-diagonal term, that is, the integral of φ1(x)φ2(y)Dd(x,y) over ∆d \∆.
This turns out to be the leading term.

5.2. Expression of some covariances. To prove (5.5), we need to study the
distribution of the random variables appearing in the definition of Dd (see Defi-
nition 5.6). The purpose of this section is to introduce several variance operators
that will appear in the proof. In the following, ∇d denotes a real connection on
E ⊗Ld → X.
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1676 THOMAS LETENDRE & MARTIN PUCHOL

5.2.1. Uncorrelated terms. First of all, let us consider the distribution
of sd(x) for any x ∈ M . Since sd ∼ N (Id) and evdx is linear (see Defini-
tion 2.2), sd(x) is a centered Gaussian vector in R(E ⊗ Ld)x with variance oper-
ator evdx(evdx)

∗ = Ed(x,x).
Lemma 5.10. For all x ∈ M , we have

|det⊥(evdx)| =
(
d

π

)rn/2
(1+O(d−1)),

where the error term is independent of x.

Proof. We have |det⊥(evdx)| = det(Ed(x,x))1/2, and by Theorem 3.3,

Ed(x,x) =
(
d

n

)n
(Id+O(d−1)). ❐

Corollary 5.11. There exists d1 ∈ N such that, for all d á d1, for all x ∈ M ,
evdx is surjective: that is, (sd(x)) is non-degenerate.

Then, let d ∈ N and x ∈ M . We denote by jdx : s ֏ (s(x),∇dxs) the
evaluation of the 1-jet of a section at the point x. The distribution of the random
vector (sd(x),∇dxsd) is a centered Gaussian in

R(E ⊗Ld)x ⊕ (R(E ⊗Ld)x ⊗ T∗xM),

with variance operator

jdx(j
d
x)
∗ = E[jdx(sd)⊗ jdx(sd)∗]

=

 E[sd(x)⊗ sd(x)

∗] E[sd(x)⊗ (∇dxsd)∗]
E[(∇dxsd)⊗ sd(x)∗] E[(∇dxsd)⊗ (∇dxsd)∗]




=

 Ed(x,x) ∂♯yEd(x,x)

∂xEd(x,x) ∂x ∂
♯
yEd(x,x)


 .

If d á d1, then sd(x) is non-degenerate, and the distribution of ∇dxsd, given that
sd(x) = 0, is a centered Gaussian whose variance equals

∂x ∂
♯
yEd(x,x)− ∂xEd(x,x)(Ed(x,x))−1 ∂♯yEd(x,x).

By Theorem 3.3, this variance equals

dn+1

πn
(IdR(E⊗Ld)x⊗T∗x M +O(d−1))

as d goes to infinity and the error does not depend on x.
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Variance of the Volume of Random Real Algebraic Submanifolds II 1677

Remark 5.12. If (s, x) is such that s(x) = 0, then ∇dxs does not depend
on the connection ∇d. This explains why the distribution of ∇dxsd given that
sd(x) = 0, in particular its variance, does not depend on ∇d.

Lemma 5.13. For every x ∈ M , we have

E
[
|det⊥(∇dxsd)| : sd(x) = 0

]

=
(
dn+1

πn

)r/2
(2π)r/2

Vol(Sn−r )
Vol(Sn)

(1+O(d−1)),

where the error term is independent of x.

Proof. This was proved in [22, Lemma 4.7] for r < n. The proof is the same
here. ❐

5.2.2. Correlated terms far from the diagonal. Let us now focus on vari-
ables where non-trivial correlations may appear in the limit. Let d ∈ N, for all
(x,y) ∈ M2 \ ∆; the random vector evdx,y(sd) = (sd(x), sd(y)) is a centered
Gaussian vector with variance operator

(5.6) evdx,y(evdx,y)
∗ = E[evdx,y(sd)⊗ evdx,y(sd)

∗] =

Ed(x,x) Ed(x,y)
Ed(y,x) Ed(y,y)


 ,

where we decomposed this operator according to the direct sum

R(E ⊗Ld)x ⊕R(E ⊗Ld)y .

Definition 5.14. For all d ∈ N, for all (x,y) ∈ M2 \∆, we denote by

Θd(x,y) =
(
π

d

)n

Ed(x,x) Ed(x,y)
Ed(y,x) Ed(y,y)




the variance of the centered Gaussian vector (π/d)n/2(sd(x), sd(y)).

Note that, by Lemma 5.4, for all d á d2, evdx,y(evdx,y)
∗ is non-singular: that

is, (sd(x), sd(y)) is non-degenerate and Θd(x,y) is non-singular.
Let d ∈ N and (x,y) ∈ M2 \ ∆. We denote the evaluation of the 1-jets at

(x,y) by jdx,y : s ֏ (s(x), s(y),∇dxs,∇dys). Then, we have that

jdx,y(sd) = (sd(x), sd(y),∇dxsd,∇dysd)

is a centered Gaussian vector in

R(E ⊗ Ld)x ⊕R(E ⊗ Ld)y ⊕ (R(E ⊗Ld)x ⊗ T∗xM)⊕ (R(E ⊗Ld)y ⊗ T∗yM),
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1678 THOMAS LETENDRE & MARTIN PUCHOL

whose variance operator jdx,y(j
d
x,y)

∗ equals

E[jdx,y(sd)⊗ (jdx,y(sd))∗]

=




Ed(x,x) Ed(x,y) ∂♯yEd(x,x) ∂♯yEd(x,y)

Ed(y,x) Ed(y,y) ∂♯yEd(y,x) ∂♯yEd(y,y)

∂xEd(x,x) ∂xEd(x,y) ∂x ∂
♯
yEd(x,x) ∂x ∂

♯
yEd(x,y)

∂xEd(y,x) ∂xEd(y,y) ∂x ∂
♯
yEd(y,x) ∂x ∂

♯
yEd(y,y)



.

Definition 5.15. For all d ∈ N, for all (x,y) ∈ M2 \∆, we denote by

Ωd(x,y) =
(
π

d

)n

×




Ed(x,x) Ed(x,y) d−1/2 ∂♯yEd(x,x) d−1/2 ∂♯yEd(x,y)

Ed(y,x) Ed(y,y) d−1/2 ∂♯yEd(y,x) d−1/2 ∂♯yEd(y,y)

d−1/2 ∂xEd(x,x) d−1/2 ∂xEd(x,y) d−1 ∂x ∂
♯
yEd(x,x) d−1 ∂x ∂

♯
yEd(x,y)

d−1/2 ∂xEd(y,x) d−1/2 ∂xEd(y,y) d−1 ∂x ∂
♯
yEd(y,x) d−1 ∂x ∂

♯
yEd(y,y)




the variance operator of the centered Gaussian vector

(
π

d

)n/2 (
sd(x), sd(y),

1√
d
∇dxsd,

1√
d
∇dysd

)
.

Let us now assume that d á d2, so that the distribution of (sd(x), sd(y)) is
non-degenerate. Then, the distribution of (∇dxs,∇dys), given that sd(x) = 0 =
sd(y), is a centered Gaussian with variance operator


∂x ∂

♯
yEd(x,x) ∂x ∂

♯
yEd(x,y)

∂x ∂
♯
yEd(y,x) ∂x ∂

♯
yEd(y,y)


−


∂xEd(x,x) ∂xEd(x,y)
∂xEd(y,x) ∂xEd(y,y)




×

Ed(x,x) Ed(x,y)
Ed(y,x) Ed(y,y)



−1
∂

♯
yEd(x,x) ∂

♯
yEd(x,y)

∂♯yEd(y,x) ∂
♯
yEd(y,y)


 .

Definition 5.16. For all d á d2, for all (x,y) ∈M2 \∆, we set

Λd(x,y) =
πn

dn+1




∂x ∂

♯
yEd(x,x) ∂x ∂

♯
yEd(x,y)

∂x ∂
♯
yEd(y,x) ∂x ∂

♯
yEd(y,y)




−

∂xEd(x,x) ∂xEd(x,y)
∂xEd(y,x) ∂xEd(y,y)




Ed(x,x) Ed(x,y)
Ed(y,x) Ed(y,y)



−1

×

∂

♯
yEd(x,x) ∂

♯
yEd(x,y)

∂♯yEd(y,x) ∂
♯
yEd(y,y)




 ,
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Variance of the Volume of Random Real Algebraic Submanifolds II 1679

which is the variance of the Gaussian vector (πn/dn+1)1/2(∇dxsd,∇dysd), given
that sd(x) = 0 = sd(y).

Remark 5.17. Once again, Λd(x,y) is independent of the choice of∇d, and
so is the distribution of (∇dxsd,∇dysd) given that sd(x) = 0 = sd(y). On the

other hand, the distribution of (sd(x), sd(y),∇dxsd,∇dysd) heavily depends on

∇d, and so does Ωd(x,y). Hence, we will need to specify a choice of ∇d at some
point when dealing with Ωd.

5.2.3. Correlated terms close to the diagonal. Finally, we need to consider
the distribution of the 1-jets of sd at x and y ∈ M , when the distance between x
and y is of order 1/

√
d. As in Section 3, let R > 0 be such that 2R is less than

the injectivity radius of X. There exists d3 ∈ N such that, for all d á d3, we have
bn lnd/

√
d à R.

Let d á d3 and let (x,y) ∈ ∆d \ ∆. Using the real normal trivialization of
E ⊗ Ld around x (see Subsection 3.1), we can see (π/d)n/2(sd(x), sd(y)) as a
random vector in R(E ⊗ Ld)x ⊕R(E ⊗ Ld)x . Since the distance from x to y is
smaller than the injectivity radius of M , we can write y as expx(z/

√
d) for some

z ∈ TxM . Moreover, ‖z‖ =
√
dρg(x,y) < bn lnd.

Definition 5.18. Let d á d3, let x ∈ M , and let z ∈ BTxM(0, bn lnd) \ {0}.
We set

Θd(z) = Θd
(
x, expx

(
z√
d

))
,

seen as an operator on R(E⊗Ld)x⊕R(E⊗Ld)x via the real normal trivialization
centered at x.

Remark 5.19. Beware that Θd(z) depends on x, even if this is not reflected
in the notation. However, we will show that the limit of Θd(z) as d → +∞ does
not depend on x.

Recall that ed was defined by equation (3.1) as a map from TxM × TxM to
End(R(E ⊗ Ld)x). The definitions of Θd(x,y) (Definition 5.14) and ed show
that, for all d á d3, for all x ∈ M , and for all z ∈ BTxM(0, bn lnd) \ {0},

(5.7) Θd(z) =

ed(0,0) ed(0, z)
ed(z,0) ed(z, z)


 .

We can define Ωd(z) and Λd(z) similarly and express them in terms of ed
and its derivatives.

Definition 5.20. Let d á d3, let x ∈ M , and let z ∈ BTxM(0, bn lnd) \ {0}.
We set

Ωd(z) = Ωd
(
x, expx

(
z√
d

))
,

seen as an operator on (R⊕R⊕ T∗xM ⊕ T∗xM)⊗R(E ⊗Ld)x via the real normal
trivialization centered at x.
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1680 THOMAS LETENDRE & MARTIN PUCHOL

Let ∇d be a real connection on E⊗Ld such that, in the real normal trivializa-
tion around x, this connection coincides over the ball BTxX(0, R) with the usual
differentiation for maps from TxX to (E⊗Ld)x . The existence of such a connec-
tion was established at the end of Subsection 3.1. Then, by Definitions 5.15 and
5.20, we have for all d á d3, for all x ∈M , and for all z ∈ BTxM(0, bn lnd) \ {0}
that

(5.8) Ωd(z) =




ed(0,0) ed(0, z) ∂♯yed(0,0) ∂♯yed(0, z)

ed(z,0) ed(z, z) ∂♯yed(z,0) ∂♯yed(z, z)

∂xed(0,0) ∂xed(0, z) ∂x ∂
♯
yed(0,0) ∂x ∂

♯
yed(0, z)

∂xed(z,0) ∂xed(z, z) ∂x ∂
♯
yed(z,0) ∂x ∂

♯
yed(z, z)



.

Definition 5.21. Let d á max(d2, d3), x ∈ M , z ∈ BT∗x M(0, bn lnd) \ {0}.
We set

Λd(z) = Λd
(
x, expx

(
z√
d

))
,

seen as an operator on (T∗xM ⊕ T∗xM)⊗ R(E ⊗ Ld)x via the real normal trivial-
ization around x.

Then, we have

Λd(z) =

∂x ∂

♯
yed(0,0) ∂x ∂

♯
yed(0, z)

∂x ∂
♯
yed(z,0) ∂x ∂

♯
yed(z, z)


−

−

∂xed(0,0) ∂xed(0, z)
∂xed(z,0) ∂xed(z, z)


Θd(z)−1


∂

♯
yed(0,0) ∂

♯
yed(0, z)

∂♯yed(z,0) ∂
♯
yed(z, z)


 ,

for all d á max(d2, d3), all x ∈ M , and all z ∈ BT∗x M(0, bn lnd) \ {0}.

5.3. Far off-diagonal term. In this section, we state that the far off-diagonal
term in equation (5.5) only contributes an error term. This was already proved
in [22] for r < n. The proof is the same for r = n, so we refer to [22] for the
proof. Lemma 5.23 below is used in the proof of Proposition 5.22, but is also of
independent interest for our purpose.

Proposition 5.22. Let φ1,φ2 ∈ C0(M). Then, as d → +∞ we have the
following:

∫

M2\∆d
φ1(x)φ2(y)Dd(x,y) |dVM |2 = ‖φ1‖∞ ‖φ2‖∞O(dr−n/2−1),

where the error term is independent of (φ1,φ2).
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Lemma 5.23. For every (x,y) ∈M2 \∆d, we have.

Θd(x,y) =
(
π

d

)n

Ed(x,x) 0

0 Ed(y,y)


 (Id+O(d−(n/2)−1)),

where the error term is independent of (x,y) ∈M2 \∆d.

Proof. Since (x,y) ∈ M2 \ ∆d, we have ρg(x,y) á bn lnd/
√
d. With

our choice of bn (see Definition 5.9), the error term in Theorem 3.6 is then
O(d(n−k)/2−1), uniformly on M2 \∆d. Thus, by Theorem 3.6,

Θd(x,y) =
(
π

d

)n

Ed(x,x) 0

0 Ed(y,y)


+O(d−n/2−1).

The result follows from the fact that the leading term is Id+O(d−1), by Theo-
rem 3.3. ❐

5.4. Near-diagonal term. In this section, we conclude the proof of Theo-
rem 1.6, up to the technical lemmas whose proofs were postponed until Appen-
dices A and B.

Definition 5.24. Let

d á max(d1, d2, d3), x ∈ M, z ∈ BTxM(0, bn lnd) \ {0}.

We define

Dd(x, z) = d−rDd
(
x, expx

(
z√
d

))
.

Recall that Dn,r was defined by Definition 4.15. The main result of this
section is the following.

Proposition 5.25. Let α ∈ (0,1).
Then, for all x ∈ M , for all z ∈ BTxM(0, bn lnd) \ {0} we have

Dd(x, z) = Dn,r (‖z‖2)(1+O(d−α))+O(d−α),

where the error terms do not depend on (x, z).

First, let us prove that Propositions 5.8, 5.22, and 5.25 together imply Theo-
rem 1.6.

Proof of Theorem 1.6. The main point is to compute the asymptotic of the

near-diagonal term in equation (5.5). Let us fix α ∈ (0,1), β ∈ (0, 1
2), and

φ1,φ2 ∈ C0(M). Let x ∈ M , and recall that
√
κ is the density of |dVM | with re-

spect to the Lebesgue measure, in the exponential chart centered at x, where κ was
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1682 THOMAS LETENDRE & MARTIN PUCHOL

introduced in Subsection 3.2. Then, by a change of variable y = expx(z/
√
d),

we have
∫

∆d\∆
φ1(x)φ2(y)Dd(x,y) |dVM |2(5.9)

= dr−n/2
∫

x∈M
φ1(x)

∫

z∈BTxM (0,bn lnd)
φ2

(
expx

(
z√
d

))
Dd(x, z)

× κ
(
z√
d

)1/2

dz |dVM |.

As we already discussed in Subsection 3.2, κ(z) = 1 + O(‖z‖2), and the er-
ror term is independent of x. Hence, κ(z/

√
d)1/2 = 1 + O((lnd)2/d), and by

Proposition 5.25, for all γ ∈ (α,1),

(5.10)
∫

z∈BTxM (0,bn lnd)
φ2

(
expx

(
z√
d

))
Dd(x, z)κ

(
z√
d

)1/2

dz

=
(∫

z∈BTxM(0,bn lnd)
φ2

(
expx

(
z√
d

))
Dn,r (‖z‖2)dz

)
(1+O(d−γ))

+ ‖φ2‖∞O
(
(lnd)n

dγ

)
.

Since γ > α, (lnd)nd−γ = O(d−α). Similarly, there exists Cβ > 0 such that
bn lnd/

√
d à Cβd−β for all d ∈ N∗. Then, we have

∣∣∣∣
∫

z∈BTxM (0,bn lnd)

(
φ2

(
expx

(
z√
d

))
−φ2(x)

)
Dn,r (‖z‖2)dz

∣∣∣∣(5.11)

à ̟φ2(Cβd
−β)

∫

z∈BTxM (0,bn lnd)
|Dn,r (‖z‖2)|dz,

where ̟φ2 is the continuity modulus of φ2 (see Definition 1.3). Besides, by
Corollary 4.19,

∫

z∈BTxM (0,bn lnd)
|Dn,r (‖z‖2)|dz(5.12)

= Vol(Sn−1)
1
2

∫ (bn lnd)2

t=0
Dn,r (t)t

(n−2)/2
dt

= Vol(Sn−1)(In,r +O(e−(1/4)(bn lnd)2)),

and the error term is O(d−1), since (1/4)(bn lnd)2 á lnd for d large enough.
By equations (5.10), (5.11), and (5.12), the innermost integral on the righthand
side of equation (5.9) equals

φ2(x)Vol(Sn−1)In,r +̟φ2(Cβd
−β)O(1)+ ‖φ2‖∞O(d−α),
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Variance of the Volume of Random Real Algebraic Submanifolds II 1683

and the error terms are independent of x ∈M and (φ1,φ2). Finally, by equation
(5.9),

∫

∆d\∆
φ1(x)φ2(y)Dd(x,y) |dVM |2

= dr−n/2
(∫

M
φ1φ2 |dVM |

)
Vol(Sn−1)In,r

+ ‖φ1‖∞̟φ2(Cβd
−β)O(dr−n/2)+ ‖φ1‖∞ ‖φ2‖∞O(dr−n/2−α).

We conclude the proof by combining this last relation with Proposition 5.8, 5.22,
and, in the case r = n, Theorem 1.2 for φ1φ2. ❐

The remainder of this section is mostly dedicated to the proof of Proposition
5.25. We will deduce this proposition from several technical lemmas stated below.

Let x ∈ M ; then, any choice of an isometry between TxM and Rn and an
isometry between R(E⊗Ld)x and Rr allows us to see the Bargmann-Fock process
(s(z))z∈Rn , studied in Section 4, as a smooth Gaussian process from TxM to
R(E ⊗ Ld)x . The distribution of this process does not depend on our choice of
isometries. Thus, in the following, we can consider Θ(z) and Θd(z) (respectively,
Ω(z) and Ωd(z), respectively Λ(z) and Λd(z)) as operators on the same space.

Lemma 5.26. Let α ∈ (0,1); then, we have

Θ(z)−1/2Θd(z)Θ(z)−1/2 = Id+O(d−α),

for all x ∈ M and all z ∈ BTxM(0, bn lnd) \ {0}. The error term does not depend
on (x, z).

Proof. See Appendix B. ❐
Remark 5.27. It might be wondered why Lemma 5.26 does not state that

Θd(z) = Θ(z)(Id+O(d−α)), which would be somewhat simpler. First, note this
statement is not equivalent to Lemma 5.26, since some of the eigenvalues of Θ(z)
converge to 0 as z → 0. In fact, this alternative statement turns out to be false in
general. Moreover, even if Θd(z) is a linear map, it represents a variance, that is,
something intrinsically bilinear. It is then quite natural to consider

Θ(z)−1/2Θd(z)Θ(z)−1/2

since this is how Θd(z) transforms if we act on R(E ⊗ Ld)x by Θ(z)1/2. This
remark also applies to Lemmas 5.28 and 5.29 below.

Let us forget about the proof of Proposition 5.25 for a minute, and prove the
existence of d2 (see Lemma 5.4) as a corollary of Lemmas 5.23 and 5.26. Note
that the proofs of these lemmas only rely on the estimates of Section 3, so there is
no logical loop here.
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1684 THOMAS LETENDRE & MARTIN PUCHOL

Proof of Lemma 5.4. We want to prove that, as soon as d is large enough,
evdx,y is surjective for all (x,y) ∈ M2 \ ∆; that is, det(evdx,y(evdx,y)

∗) ≠ 0. By
equation (5.6) and the definition of Θd (Definition 5.14),

det(evdx,y(evdx,y)
∗) =

(
d

π

)2rn

det
(
Θd(x,y)

)
,

so we have to show that det(Θd(x,y)) does not vanish on M2 \ ∆, for d large
enough. By Lemma 5.23 and Theorem 3.3,

(5.13) det(Θd(x,y)) = 1+O(d−1),

uniformly on M2 \ ∆d. Let (x,y) ∈ ∆d \ ∆ and let us assume that d á d3 so
that we can write y as expx(z/

√
d) with z ∈ BTxM(0, bn lnd) \ {0}. Then, by

Lemmas 5.26 and 4.8,

det(Θd(x,y)) = det(Θd(z)) = det(Θ(z))(1 +O(
√
d))(5.14)

= (1− e−‖z‖2
)r (1+O(

√
d)),

uniformly on ∆d \∆. The result follows from equations (5.13) and (5.14). ❐

We can now go back to the proof of Proposition 5.25.

Lemma 5.28. Let α ∈ (0,1). Then, we have

Ω(z)−1/2Ωd(z)Ω(z)−1/2 = Id+O(d−α),

for all x ∈ M and all z ∈ BTxM(0, bn lnd) \ {0}. The error term does not depend
on (x, z).

Proof. See Appendix B. ❐

Lemma 5.29. Let α ∈ (0,1); then, we have

Λ(z)−1/2Λd(z)Λ(z)−1/2 = Id+O(d−α),

for all x ∈ M and all z ∈ BTxM(0, bn lnd) \ {0}. The error term does not depend
on (x, z).

Proof. Let α ∈ (0,1). Let x ∈ M and z ∈ BTxM(0, bn lnd) \ {0}. By
Definition 5.20, Ωd(z) is an operator on

(R2 ⊗R(E ⊗Ld)x)⊕ ((T∗xM)2 ⊗R(E ⊗Ld)x).

Using this splitting, we write Ωd(z) by blocks as

Ωd(z) =

Θd(z) Ω

1
d(z)

∗

Ω1
d(z) Ω2

d(z)


 ,
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Variance of the Volume of Random Real Algebraic Submanifolds II 1685

thus defining Ω1
d(z) and Ω2

d(z). For d large enough, Θd(z) is invertible and its
Schur complement is Λd(z) = Ω2

d(z)−Ω1
d(z)Θd(z)−1Ω1

d(z)
∗. It is then known

that Λd(z)−1 is the bottom-right block of Ωd(z)−1, that is,

Λd(z)−1 =
(
0 Id

)
Ωd(z)−1


 0

Id




=
(
0 Id

)
(Ω(z)−1 +Ω(z)−1/2O(d−α)Ω(z)−1/2)


 0

Id


 ,

where the second equality is given by Lemma 5.28 and the error term is inde-
pendent of (x, z). Similarly, Λ(z) is the Schur complement of Θ(z) in Ω(z), so
that

Λ(z)−1 =
(
0 Id

)
Ω(z)−1


 0

Id


 .

Moreover, by Lemma 4.14,

(
0 Λ(z)1/2

)
Ωd(z)−1/2 is bounded.

Hence, Λ(z)1/2Λd(z)−1Λ(z)1/2 = Id+O(d−α), and the error term still does not
depend on (x, z). ❐

Lemma 5.30. Let α ∈ (0,1), let x ∈ M , and let z ∈ BTxM(0, bn lnd) \ {0}.
Let Xd(z) and Yd(z) be random vectors in T∗xM ⊗R(E ⊗ Ld)x such that

(Xd(z), Yd(z)) ∼N (Λd(z)).

Then, we have

E
[
|det⊥(Xd(z))| |det⊥(Yd(z))|

]

= E
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]
(1+O(d−α)),

where (X∞(z), Y∞(z)) ∼N (Λ(z)) and the error term does not depend on (x, z).

Proof. See Appendix B. ❐

We conclude this section with the proof of Proposition 5.25. Recall the def-
initions of Dn,r (t) (Definition 4.15), Dd(x,y) (Definition 5.6), and Dd(x, z)
(Definition 5.24).

Proof of Proposition 5.25. Let us fix α ∈ (0,1).
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1686 THOMAS LETENDRE & MARTIN PUCHOL

Let x ∈ M and z ∈ BTxM(0, bn lnd) \ {0}. Then, we set y = expx(z/
√
d).

We have defined Θd(z) and Λd(z) so that

1
dr
E
[
|det⊥(∇dxsd)| |det⊥(∇dysd)| : sd(x) = 0 = sd(y)

]

|det⊥(evdx,y)|

= E
[
|det⊥(Xd(z))| |det⊥(Yd(z))|

]

det(Θd(z))1/2
,

where (Xd(z), Yd(z)) ∼N (Λd(z)). By Lemmas 5.26 and 5.30, this equals

E
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]

det(Θ(z))1/2 (1+O(d−α)),

where (X∞(z), Y∞(z)) ∼ N (Λ(z)) and the error term does not depend on
(x, z). (X∞(z), Y∞(z)) is distributed as (d0s, dzs), where s is a copy of the
Bargmann-Fock process from TxM to R(E ⊗Ld)x , by the definition of Λ(z) (cf.
Subsection 4.3). Then, by Lemma 4.16,

E
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]
= E

[
|det⊥(X(‖z‖2))| |det⊥(Y(‖z‖2))|

]
,

where (X(‖z‖2), Y(‖z‖2)) was defined by Definition 1.5. Besides, det(Θ(z)) =
(1− e−‖z‖2

)r by Lemma 4.1, so that

1
dr
E
[
|det⊥(∇dxsd)| |det⊥(∇dysd)| : sd(x) = 0 = sd(y)

]

|det⊥(evdx,y)|

=
(
Dn,r (‖z‖2)+ (2π)r

(
Vol(Sn−r )
Vol(Sn)

)2
)
(1+O(d−α)).

Besides, by Lemmas 5.10 and 5.13,

1
dr
E
[
|det⊥(∇dxsd)| : sd(x) = 0

]

|det⊥(evdx)|
E
[
|det⊥(∇dysd)| : sd(y) = 0

]

|det⊥(evdx)|

= (2π)r
(

Vol(Sn−r )
Vol(Sn)

)2

+O(d−1).

This yields the desired relation. ❐

6. PROOF OF THEOREM 1.8

The goal of this section is to prove that the leading constant in Theorem 1.6
is positive. Subsection 6.1 is concerned with the definition and proprieties of
Kostlan-Shub-Smale polynomials. In Subsection 6.2 we recall some facts about
Wiener chaoses, while in Subsection 6.3 we compute the chaotic expansion of
the linear statistics 〈|dVd|,φ〉. Finally, we conclude the proof of Theorem 1.8 in
Subsection 6.4.
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Variance of the Volume of Random Real Algebraic Submanifolds II 1687

6.1. Kostlan-Shub-Smale polynomials. Here, we describe a special case of
our real algebraic framework. This is the setting we will be considering throughout
the proof of Theorem 1.8. A good reference for the complex algebraic material of
this section is [16].

6.1.1. Definition. We choose X to be the complex projective space CPn

with the real structure induced by the complex conjugation in Cn+1. The real
locus of X is the real projective space RPn. We set L = O(1) → CPn as the
hyperplane line bundle: that is, the dual of the tautological line bundle

O(−1) = {(ζ,x) ∈ Cn+1 × CPn | ζ ∈ x} -→ CP
n.

Recall that ample line bundles on CPn are of the form O(d) = (O(1))⊗d with
d ∈ N∗ (see [16, Section 1.1]). The complex conjugation and the usual Hermitian
inner product of Cn+1 induce compatible real and metric structures on O(−1),
hence on O(1) by duality. The resulting Hermitian metric on O(1) is positive
and its curvature is the Fubini-Study Kähler form on CPn. With our choice of
normalization, the induced Riemannian metric is the quotient of the Euclidean
metric on S2n+1 ⊂ Cn+1. Finally, we choose E to be the rank r trivial bundle
Cr × CPn → CPn, with the compatible real and metric structures inherited from
the standard ones in Cr .

Notation 6.1. Let α = (α0, . . . , αn) ∈ Nn+1. We denote its length by

|α| = α0 + · · · + αn.

We also define Xα = Xα0
0 . . . X

αn
n and α! = α0! · · ·αn!. Finally, if |α| = d, we

denote by
(
d
α

)
the multinomial coefficient d!/α!.

It is well known (cf. [6, 7, 17, 22]) that RH0(CPn,Cr ⊗ O(d)) is the space
(Rhom
d [X0, . . . , Xn])r of tuples of real homogeneous polynomials of degree d in

n + 1 variables. The r terms Rhom
d [X0, . . . , Xn] in RH0(CPn,Cr ⊗ O(d)) are

pairwise orthogonal for the inner product (2.2). Besides, in restriction to one of
these terms, (2.2) equals

(P,Q)֏

∫

x∈CPn
hd(P(x),Q(x)) |dVCPn |(6.1)

= 1
π(d+n)!

∫

z∈Cn+1
P(z)Q(z)e−‖z‖

2
dz.

An orthonormal basis of Rhom
d [X0, . . . , Xn] is then



√
(d+n)!
πnd!

√√√√
(
d

α

)
Xα



|α|=d

.
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1688 THOMAS LETENDRE & MARTIN PUCHOL

Hence, a standard Gaussian in RH0(CPn,Cr ⊗O(d)) is a r -tuple of independent
random polynomials of the form

(6.2)

√
(d+n)!
πnd!

∑

|α|=d
aα

√√√√
(
d

α

)
Xα,

where the coefficients (aα)|α|=d are independent real standard Gaussian variables.
Such a random polynomial is called a Kostlan-Shub-Smale polynomial (KSS for
short).

6.1.2. Correlation kernel. In this section, we study the distribution of the
KSS polynomial (see equation (6.2)). In the setting of 6.1.1, Ed is the Bergman
kernel of Cr ⊗O(d)→ CPn. Since the first factor is trivial, we have Ed = Ir ⊗E′d,
where Ir is the identity of Cr and E′d is the Bergman kernel of O(d)→ CPn. Note
that E′d is the correlation kernel of the field s′d defined by one KSS polynomial,
seen as a random section of O(d). By equation (6.2) we have

E′d(x,y) = E[s′d(x)⊗ s′d(y)∗] =
(d+n)!
πnd!

∑

|α|=d

(
d

α

)
Xα(x)⊗Xα(y)∗.

Note that (6.1) is invariant under the action of the orthogonal groupOn+1(R)
on the right. Hence, the distribution of KSS polynomials (6.2) and E′d is equivari-
ant under this action. Since On+1(R) acts transitively on the couples of points
of RPn at a given distance, E′d(x,y) only depends on the geodesic distance
ρg(x,y), and the same holds for derivatives. Loosely speaking, this implies the
following, where derivatives are computed with respect to the Chern connection:

(1) The variance of s′d(x) does not depend on x ∈ RPn.
(2) For all x ∈ RPn, s′d(x) and ∇dxs′d are independent.
(3) If (∂/∂x1, . . . , ∂/∂xn) is any orthonormal basis of TxRPn, then

∂s′d
∂xi

(x) and
∂s′d
∂xj

(x) are independent of i ≠ j.

Moreover, the variance of (∂sd/∂xi)(x) does not depend on i, nor on
our choice of orthonormal basis, nor on x ∈ RPn.

These properties are very specific of the case of KSS polynomials. They will be
useful in Section 6.3, to compute the Wiener-Itô expansion of 〈|dVd|,φ〉. We do
not give more details here, since properties (1), (2), and (3) can also be deduced
from the expression of E′d in local coordinates that we derive below.

6.1.3. Local expression of the kernel. Let x ∈ RPn. We want to compute
the expression of E′d in some good coordinates around x. We could use the real
normal trivialization, but the computations would be cumbersome. Instead, we
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Variance of the Volume of Random Real Algebraic Submanifolds II 1689

use a slightly different trivialization. Since E′d is equivariant under the action
On+1(R), we can assume that x = [1 : 0 : · · · : 0].

We have a chart ψx : (z1, . . . , zn) 7 -→ [1 : z1 : · · · : zn] from Rn to
BRPn(x,π/2). We trivialize O(d) over BRPn(x,π/2) by identifying each fiber
with O(d)x, by parallel transport with respect to the Chern connection ∇d along
curves of the form t ֏ ψx(tz) with z ∈ Rn. Thanks to this trivialization, we can
consider E′d as a map taking values in R. Recall that we defined a scaled version
ed of the Bergman kernel Ed by equation (3.1). The following is related without
being an exact analogue. For all w,z ∈ Rn, we set

(6.3) ξd(w, z) =
πnd!
(d+n)!E

′
d(ψx(w),ψx(z)).

A computation in local coordinates yields the following lemma. The Chern
connection ∇d coincides at the origin with the usual differential in our trivializa-
tion. Hence, taking the values at (0,0) of the following expressions proves that s′d
satisfies properties (1), (2) and (3) (cf. Subsection 6.1.2).

Lemma 6.2. Let d ∈ N∗ and let i, j ∈ {1, . . . , n}. Then, for all w,z ∈ Rn
we have

ξd(w, z) =
(

1+ 〈w,z〉√
1+ ‖w‖2

√
1+ ‖z‖2

)d
,

∂xiξd(w, z) = dξd(w, z)
(

zi
1+ 〈w,z〉 −

wi
1+ ‖w‖2

)
,

∂yjξd(w, z) = dξd(w, z)
(

wj
1+ 〈w,z〉 −

zj
1+ ‖z‖2

)
,

∂xi ∂yjξd(w, z) = ξd(w, z)
(

dδij
1+ 〈w,z〉 −

d2wiwj
(1+ 〈w,z〉)(1 + ‖w‖2)

− d2zizj
(1+ 〈w,z〉)(1+ ‖z‖2)

+ d2wizj
(1+ ‖w‖2)(1+ ‖z‖2)

+ (d
2 − d)ziwj

(1+ 〈w,z〉)2
)
,

where δij = 1 if i = j, and δij = 0 otherwise.

6.2. Hermite polynomials and Wiener chaos. In the setting of KSS poly-
nomials, we consider RH0(CPn,Cr ⊗ O(d)) = (Rhom

d [X0, . . . , Xn])r , equipped
with the inner product (6.1). For simplicty, in this section and the following,
we denote by Vd this Euclidean space and by dνd its standard Gaussian measure.
With these notation, (Vd,dνd) is our probability space and we denote by L1(dνd)
(respectively, L2(dνd)) the space of integrable (respectively, square integrable) ran-
dom variables on this space. Theorem 1.6 shows that for d large enough, for all
φ ∈ C0(RPn), 〈|dVd|,φ〉 ∈ L2(dνd). The proof given in Section 5 shows that
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1690 THOMAS LETENDRE & MARTIN PUCHOL

this is true for any d á max(d0, d1, d2, d3); in this framework it is true for any
d ∈ N∗. The idea of this section is to find a nice orthogonal decomposition of
L2(dνd). In 6.3 we will study 〈|dVd|,φ〉 thanks to this decomposition. (These
techniques were already used in a similar context in [2, 11, 12, 25], e.g. See [28]
for background on the following material.)

Definition 6.3. For all k ∈ N, we denote by Hk the k-th Hermite polynomial.
These polynomials are defined recursively byH0 = 1,H1 = X, and, for all k ∈ N∗,
Hk+1(X) = XHk(X)− kHk−1(X).

Remark 6.4. Equivalently, one can define Hk by H0 = 1 and, for all k ∈ N,
by Hk+1 = XHk −H′k.

Lemma 6.5. Let k ∈ N; then, Hk is a polynomial of degree k which is even if k
is even and odd if k is odd. Moreover,

H2k(0) = (−1)k
(2k)!
2kk!

and H2k+1(0) = 0.

Proof. This is proved by induction, by using the recursive definition ofHk. ❐

Let us denote by dµN the standard Gaussian measure on RN . We also de-
note by L2(dµN) the space of square integrable functions with respect to dµN .
Recall that the family ((1/

√
k!)Hk)k∈N is a Hilbert basis of L2(dµ1) (see Proposi-

tion 1.4.2 in [28]). Similarly, in dimension N, the family

{ N∏

i=1

1√
αi!
Hαi(Xi) | α ∈ NN

}

is a Hilbert basis of L2(dµN). The result in dimension 1 shows that this family is
orthonormal. Then, one only needs to check that the space of polynomials in N
variables is dense in L2(dµN). For N = 1 this is proved in Proposition 1.1.5 of
[28], and the same proof works in any dimension.

As in Section 5, we denote by sd a generic element of (Vd,dνd), which we
think of as a standard Gaussian vector in Vd. Let η ∈ V∗d ; then, η(sd) ∈ L2(dνd)
is a real centered Gaussian variable. Moreover, for any η,η′ ∈ V∗d , we have
E[η(sd)η′(sd)] = 〈η,η′〉. Thus, V∗d is canonically isometric to a subspace of
L2(dνd), via η ֏ η(sd). From now on, we identify V∗d with its image, so that
V∗d ⊂ L2(dνd) is a centered Gaussian Hilbert space.

Definition 6.6. Let (η1, . . . , ηNd) denote an orthonormal basis of V∗d ; that
is, the (ηi(sd))i∈{1,...,Nd} are independent real standard Gaussian variables. For all
q ∈ N, we define Cd[q], the q-th Wiener chaos of the field sd, as the subspace of
L2(dνd) spanned by the orthogonal family

{ Nd∏

i=1

Hαi(ηi) | α ∈ NNd , |α| = q
}
.
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Variance of the Volume of Random Real Algebraic Submanifolds II 1691

Remarks 6.7.

• Cd[0] is the space of constant random variables in L2(dνd) and Cd[1] =
V∗d .

• We do not need to take the closure in the definition of Cd[q] since it is
finite dimensional.

Lemma 6.8. The Wiener chaoses (Cd[q])q∈N of sd do not depend on the choice
of the orthonormal basis (η1, . . . , ηNd) appearing in Definition 6.6.

Proof. Let (η1, . . . , ηNd) and (η′1, . . . , η
′
Nd
) be two orthonormal basis of V∗d .

There is an orthogonal transformation U of V∗d such that, for all i ∈ {1, . . . , Nd},
we have η′i = U(ηi). As the situation is symmetric, we only have to prove (for

any β ∈ NNd such that |β| = q) that
∏Nd
i=1Hβi(ηi) is a linear combination of

elements of the family: {
∏Nd
i=1Hαi(U(ηi)) | α ∈ NNd , |α| = q}. Dropping the

dependence on d, this amounts to proving that if X = (X1, . . . , XN) ∈ RN and

U ∈ ON(R), then, for all β ∈ NN such that |β| = q,
∏N
i=1Hβi(Xi) is a linear

combination of the (
∏N
i=1Hαi(U(Xi)))|α|=q.

By [28, Proposition 1.4.2], we have

∀ t ∈ Rn,
∑

α∈NN

( N∏

i=1

Hαi(Xi)
)tα
α!
= exp

(
〈t,X〉 − ‖t‖

2

2

)
,

where 〈·, ·〉 is the standard inner product of RN and ‖ · ‖ the associated norm. As
the righthand side is invariant under orthogonal transformation, we have

∀ t ∈ Rn,
∑

α∈NN

( N∏

i=1

Hαi(U(Xi))
)(U(t))α

α!
=

∑

α∈NN

( N∏

i=1

Hαi(Xi)
) tα
α!
.

Now, note that the components of U(t) are homogeneous polynomials of degree 1
in (t1, . . . , tN). Hence, (U(t))α can only contribute terms of degree |α| to the
sum.

We conclude by identifying the coefficients of these power series of the vari-
able t. ❐

Lemma 6.9. For all d ∈ N∗,
⊕
q∈N Cd[q] is dense in L2(dνd). Moreover, the

terms of this direct sum are pairwise orthogonal.

Proof. As the family (
∏Nd
i=1Hαi(Xi))α∈NNd is orthogonal, the (Cd[q])q∈N are

pairwise orthogonal by definition. Let (s1,d, . . . , sNd,d) be an orthonormal basis
of Vd. We have sd =

∑
aisi,d, where the ai are independent N (1). For any

i ∈ {1, . . . , Nd}, let ηi = 〈·, si,d〉, so that ηi(sd) = ai. Then, for any q ∈ N,

Cd[q] is spanned by the random variables (
∏Nd
i=1Hαi(ai))|α|=q .

Any square integrable functional of sd can be written as F(a1, . . . , aNd), with

F ∈ L2(dµNd). Since the span of {
∏Nd
i=1Hαi(Xi) | α ∈ NNd} is dense in L2(dµNd),

the conclusion follows. ❐
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1692 THOMAS LETENDRE & MARTIN PUCHOL

Notation 6.10. Let d ∈ N∗ and let A ∈ L2(dνd). For any q ∈ N, we denote
by A[q] the q-th chaotic component of A, that is, its projection onto Cd[q]. Then,
we have A =

∑
q∈NA[q] in L2(dνd).

By definition, A[0] = E[A]. Moreover, as the Cd[q] are pairwise orthogonal,
we have E[A[q]] = 0 for any q ∈ N∗, and Var(A) =

∑
q∈N∗ Var(A[q]).

6.3. Wiener-Itô expansion of the linear statistics. Recall that we consider
a standard Gaussian section sd ∈ Vd = (Rhom

d [X0, . . . , Xn])r and that |dVd| de-
notes the Riemannian measure of integration over its real zero set. Let us fix
d ∈ N∗ and φ ∈ C0(RPn). By Theorem 1.6, 〈|dVd|,φ〉 ∈ L2(dνd). The goal of
this section is to compute the chaotic expansion of these variables. For all q ∈ N,
we denote 〈|dVd| [q],φ〉 for 〈|dVd|,φ〉)[q].

Since 〈|dVd|,φ〉 ∈ L2(dνd), for any A ∈ L2(dνd) we have

(A〈|dVd|,φ〉) ∈ L1(dνd),

and

E[A〈|dVd|,φ〉] = E
[∫

x∈Zd
φ(x)A(sd) |dVd|

]
.

Even if A depends on sd, we can apply a Kac-Rice formula (cf. Theorem 5.3 of
[22]). Thus, we have

E[A〈|dVd|,φ〉] = (2π)−r/2
∫

x∈RPn
φ(x)

|det⊥(evdx)|
× E

[
A|det⊥(∇dxsd)| : sd(x) = 0

]
|dVRPn|.

Recall that sd is a tuple of independent KSS polynomials, and that Ed =
Ir ⊗ E′d, where E′d is the correlation kernel of one KSS polynomial. By equation
(6.3) and Lemma 6.2, we have

|det⊥(evdx)| = det(Ed(x,x))1/2 = det(E′d(x,x))
r/2 =

(
(d+n)!
πnd!

)r/2
.

Denoting

(
d
(d+n)!
πnd!

)−1/2

∇dxsd by Ld(x),

(
(d+n)!
πnd!

)−1/2

sd(x) by td(x),

we get

E[A〈|dVd|,φ〉] =
(
d

2π

)r/2 ∫

x∈RPn
φ(x)(6.4)

× E
[
A|det⊥(Ld(x))| : td(x) = 0

]
|dVRPn|.

This content downloaded from 
�������������195.221.160.9 on Wed, 19 Feb 2025 09:06:25 UTC������������� 

All use subject to https://about.jstor.org/terms



Variance of the Volume of Random Real Algebraic Submanifolds II 1693

Let x ∈ RPn; without loss of generality, we can assume that the coordi-
nates on Rn+1 are such that x = [1 : 0 : · · · : 0]. Let ζ0(x) be one of the
two unit vectors in RO(d)x, the other one being −ζ0(x). This gives an iso-
morphism between (R ⊕ T∗x (RPn)) ⊗ O(d)x and R ⊕ T∗x (RPn), so that we
can consider (td(x), Ld(x)) as an element of Rr ⊕ (T∗x RPn)r . We denote by

(t(1)d (x), . . . , t
(r)
d (x)) the components of td(x), and by (L(1)d (x), . . . , L

(r)
d (x))

those of Ld(x). The couples (t(i)d (x), L
(i)
d (x)) are centered Gaussian vectors in

R ⊕ T∗x RPn that are independent from one another. Moreover, by Lemma 6.2,

for all i ∈ {1, . . . , r}, the variance operator of (t(i)d (x), L
(i)
d (x)) is Id.

Let us choose any orthonormal basis of T∗x RP
n, and denote the coordinates

of L(i)d (x) in this basis by (Li1d (x), . . . , L
in
d (x)), so that

(
L
ij
d (x)

)
1àiàr
1àjàn

is the matrix of Ld(x).

Then,
{t(i)d (x) | 1 à i à r} ⊔ {Lijd (x) | 1 à i à r, 1 à j à n}

is a family of independent real standard Gaussian variables in L2(dνd), and we
can complete it into an orthonormal basis of Cd[1]. We therefore denote by

{S(i)d (x) | r(n+ 1) < i à Nd} the last elements of such a basis. Below, we work
in the Hilbert basis of L2(dνd) obtained by considering Hermite polynomials in
these variables.

Remark 6.11. We just used the fact that our random field satisfies properties
(1), (2), and (3) of Subsection 6.1.2. This is what makes this computation specific
to the case of KSS polynomials.

Notation 6.12. Let α ∈ Nr , β ∈ Nr ×Nn and γ ∈ NNd−r(n+1). We will use
the following notation:

Hα(td(x)) =
r∏

i=1

Hαi(t
(i)
d (x)),

H̃β(Ld(x)) =
∏

1àiàr, 1àjàn

Hβij(L
ij
d (x)),

Ĥγ(Sd(x)) =
Nd∏

i=r(n+1)+1

Hγi(S
(i)
d (x)).

We first expand |det⊥(Ld(x))| in L2(dνd). Since |det⊥(Ld(x))| only de-

pends on the variables {Lijd (x) | 1 à i à r, 1 à j à n}, we have

|det⊥(Ld(x))| =
∑

β∈Nr×Nn
Bβ
H̃β(Ld(x))√

β!
,
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1694 THOMAS LETENDRE & MARTIN PUCHOL

where

Bβ =
1√
β!
E
[
|det⊥(Ld(x))|H̃β(Ld(x))

]
∀β ∈ Nr ×Nn.

The coefficient Bβ only depends on the distribution of Ld(x), which is a standard
Gaussian for all x ∈ RPn. Hence, Bβ is independent of x. These coefficients have

several symmetries. Note that |det⊥((L
ij
d (x))i,j)| is invariant under the following

operations:

• multiplying a whole column or a whole row by −1
• permuting the rows or permuting the columns.

Since the Hermite polynomials of odd degrees are odd (cf. Lemma 6.5), the first
point shows that Bβ = 0 whenever there exists i ∈ {1, . . . , r} such that

∑n
j=1 βij

is odd or there exists j ∈ {1, . . . , n} such that
∑r
i=1 βij is odd. We denote by I

the set of multi-indices β ∈ Nr ×Nn such that, for all i ∈ {1, . . . , r},
∑n
j=1 βij is

even, and, for all j ∈ {1, . . . , n},
∑r
i=1 βij is even.

If |β| = 2, then the only way for β to belong to I is that there exist (i, j)
such that βij = 2, the other components of β being zero. The second point above
shows that, in this case, the value of Bβ does not depend on the index (i, j) such
that βij = 2.

Notation 6.13. Let B2 denote the common value of the Bβ for β ∈ I such
that |β| = 2.

We can also expand A ∈ L2(dνd) as

A =
∑

α,β,γ

Aα,β,γ(x)
Hα(td(x))√

α!

H̃β(Ld(x))√
β!

Ĥγ(Sd(x))√
γ!

,

where

Aα,β,γ(x) = E
[
A
Hα(td(x))√

α!

H̃β(Ld(x))√
β!

Ĥγ(Sd(x))√
γ!

]
.

Then, using the orthonormality properties of the Hermite polynomials, we get

(6.5) E
[
A|det⊥(Ld(x))| : td(x) = 0

]
=
∑

α,β

Aα,β,0(x)Bβ
Hα(0)√
α!
,

where the sum runs over multi-indices such that α ∈ 2Nr (see Lemma 6.5), and
β ∈ I. Then, by equations (6.4) and (6.5), for any A ∈ Cd[q], we have

E[A〈|dVd|,φ〉] =
(
d

2π

)r/2

×
∑

α∈2Nr , β∈I
|α|+|β|=q

Bβ
Hα(0)√
α!

E

[
A

∫

x∈RPn
φ(x)

Hα(td(x))√
α!

H̃β(Ld(x))√
β!

|dVRPn |
]
.
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Variance of the Volume of Random Real Algebraic Submanifolds II 1695

We have proved the following proposition.

Proposition 6.14. For all d ∈ N∗, for all φ ∈ C0(RPn), for all q ∈ N, we
have 〈|dVd| [2q + 1],φ〉 = 0, and

(6.6) 〈|dVd| [2q],φ〉 =
(
d

2π

)r/2

×
∫

x∈RPn
φ(x)

∑

α∈2Nr , β∈I
|α|+|β|=2q

Bβ
Hα(0)√
α!

Hα(td(x))√
α!

H̃β(Ld(x))√
β!

|dVRPn |.

Remarks 6.15.

• Recall that the values of the t(i)d (x) and L
ij
d (x) depend on the choice

of the unit vector ζ0(x), which we used to trivialize O(d)x. The only
other choice of such a unit vector is −ζ0(x). Changing ζ0(x) to −ζ0(x)

changes t(i)d (x) to −t(i)d (x) and L
ij
d (x) to −Lijd (x). Since we only con-

sider multi-indices (α,β) such that |α| + |β| is even, the monomials ap-
pearing in Hα(td(x))H̃β(Ld(x)) with a non-zero coefficient have even
total degree. Hence, the value of Hα(td(x))H̃β(Ld(x)) does not depend
on the choice of ζ0(x).

• Since
∑
β∈I, |β|=p(Bβ/

√
β!)H̃β(Ld(x)) is the p-th chaotic component of

|det⊥(Ld(x))|, it does not depend on our choice of an orthonormal basis
of T∗x RP

n. Hence, neither does the value of the sum on the righthand
side of equation (6.6), for any given x ∈ RPn.

• By [21, Lemma A.14],

B0 = E
[
|det⊥(Lx(d))|

]
= (2π)r Vol(Sn−r )

Vol(Sn)
.

Then, Proposition 6.14 for q = 0 shows that, in the setting of KSS poly-
nomials, for all φ ∈ C0(RPn),

E[〈|dVd|,φ〉] = dr/2
(∫

RPn
φ |dVRPn |

)
Vol(Sn−r )
Vol(Sn)

.

That is, in this case, the error term in Theorem 1.2 is zero for any d ∈ N∗.

Let us conclude this section by writing 〈|dVd| [2],φ〉 in a more explicit way.

Lemma 6.16. For all d ∈ N∗, for all φ ∈ C0(RPn),

〈|dVd| [2],φ〉 = dr/2
Vol(Sn−r )
2nVol(Sn)

×
∫

x∈RPn
φ(x)(‖Ld(x)‖2 −n‖td(x)‖2) |dVRPn|.
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1696 THOMAS LETENDRE & MARTIN PUCHOL

Proof. By Proposition 6.14 and Lemma 6.5, we have

(6.7) 〈|dVd| [2],φ〉 =
(
d

2π

)r/2

×
∫

x∈RPn
φ(x)

(
−B0

2
(‖td(x)‖2 − r)+ B2√

2
(‖Ld(x)‖2 −nr)

)
|dVRPn |,

where B2 is defined by Notation 6.13. Since H2 = X2 − 1, we have

n
√

2B2 =
n∑

j=1

E
[
|det⊥(Ld(x))|H2(L

1j
d (x))

]

= E
[
|det⊥(Ld(x))| ‖L(1)d (x)2‖

]
−nB0.

It was proved in [21, Appendix B] that |det⊥(Ld(x))| is distributed as

‖L(1)d (x)‖‖Zn−1‖ . . .‖Zn−r+1‖,

where (L(1)d (x), Zn−1, . . . , Zn−r+1) are globally independent and Zp is a standard

Gaussian vector in Rp, for all p ∈ {n−r +1, . . . , n−1}. Since L(1)d (x) ∼N (Id)
in a Euclidean space of dimension n, we have

B0 = E
[
|det⊥(Ld(x))|

]
= E

[
‖L(1)d (x)‖

] n−1∏

p=n−r+1

E
[
‖Zp‖

]

= (2π)r/2 Vol(Sn−r )
Vol(Sn)

,

B2 =
1

n
√

2
E
[
‖L(1)d (x)‖3

] n−1∏

p=n−r+1

E
[
‖Zp‖

]
− B0√

2

= B0√
2

(
2π
n

Vol(Sn)
Vol(Sn+2)

− 1
)
= B0

n
√

2
.

We plug these relations in equation (6.7), and this yields the result. ❐

6.4. Conclusion of the proof. In this section, we finally prove Theorem 1.8.
The key point is the following.

Lemma 6.17. Let Zd be the common zero set of r independent Kostlan-Shub-
Smale polynomials in RPn; then, we have the following as d goes to infinity:

Var(Vol(Zd)[2]) ∼ dr−n/2r
(

1+ 2
n

)
πn/2

Vol(Sn−r )2

16 Vol(Sn)
.

Let us prove that this lemma implies Theorem 1.8.
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Variance of the Volume of Random Real Algebraic Submanifolds II 1697

Proof of Theorem 1.8. Let us consider the common zero set Zd of r indepen-
dent KSS polynomials in RPn, and denote by |dVd| the Riemannian volume
measure on Zd. Let 1 be the unit constant function on RPn. We thus have
〈|dVd|,1〉 = Vol(Zd) and, by Theorem 1.6,

d−r+n/2 Var(Vol(Zd)) = Vol(RPn)

(
Vol(Sn−1)

(2π)r
In,r + δrn

2
Vol(Sn)

)
+ o(1).

On the other hand, as we explained at the end of Subsection 6.2,

d−r+n/2 Var(Vol(Zd)) = d−r+n/2
∑

q∈N∗
Var(Vol(Zd)[q])

á d−r+n/2 Var(Vol(Zd)[2]).

By Lemma 6.17, we get

(
Vol(Sn−1)

(2π)r
In,r + δrn

2
Vol(Sn)

)

á
r

8

(
1+ 2

n

)
πn/2

(
Vol(Sn−r )
Vol(Sn)

)2

> 0. ❐

Remark 6.18. In [11], Dalmao proved that for n = r = 1, one obtains
Var(Vol(Zd)) ∼ σ 2

√
d with σ 2 ≃ 0.57 . . . . What we just said shows that σ 2 =

1+ I1,1, and the lower bound we get for this term in the proof of Theorem 1.8 is
3/(8

√
π) ≃ 0.21 . . . . Thus, asymptotically, chaotic components of order greater

than 4 must contribute to the leading term of Var(Vol(Zd)).

We conclude this section by the proof of Lemma 6.17.

Proof of Lemma 6.17. Recall that |dVd| is the Riemannian volume measure
on Zd, and that 1 is the unit constant function on RPn. By Lemma 6.16, we have

Vol(Zd)[2] = 〈|dVd| [2],1〉

= dr/2 Vol(Sn−r )
2nVol(Sn)

∫

x∈RPn
(‖Ld(x)‖2 −n‖td(x)‖2) |dVRPn |.

Since this is a centered variable, its variance equals

dr
(

Vol(Sn−r )
2nVol(Sn)

)2

×
∫

(x,y)∈(RPn)2
E[(‖Ld(x)‖2−n‖td(x)‖2)(‖Ld(y)‖2−n‖td(y)‖2)] |dVRPn|2.
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1698 THOMAS LETENDRE & MARTIN PUCHOL

Using the invariance of the distribution of sd under isometries, we get that

(6.8) Var(Vol(Zd)[2]) = dr
Vol(Sn−r )2

8n2 Vol(Sn))
Jn,r(d),

where, setting x0 = [1 : 0 : · · · : 0],

Jn,r (d)

=
∫

y∈RPn
E[(‖Ld(x0)‖2 −n‖td(x0)‖2)(‖Ld(y)‖2 −n‖td(y)‖2)] |dVRPn|.

Since BRPn(x0, π/2) = {[1 : z1 : · · · : zn] ∈ RPn | z ∈ Rn} has full measure
in RPn, we can restrict the above integral to this ball and use the local coordinates
introduced in Subsection 6.1.3. These coordinates are centered at x0. Moreover,
note that the density of |dVRPn| with respect to the Lebesgue measure in this chart
is z ֏ (1 + ‖z‖2)−(n+1)/2 (cf. [16, p. 30]). Moreover, by a change of variable
y = [1 : z1 : · · · : zn], we have

(6.9) Jn,r(d) =
∫

z∈Rn
Fd(z)(1+ ‖z‖2)−(n+1)/2

dz,

where

Fd(z) = E[(‖Ld(0)‖2 −n‖td(0)‖2)(‖Ld(z)‖2 −n‖td(z)‖2)].

Here, we denoted td(z) instead of td([1 : z1 : · · · : zn]) and Ld(z) instead of
Ld([1 : z1 : · · · : zn]).

Let us fix z ∈ Rn and computeFd(z). Using once again the invariance under
the action of On+1(R) on RPn, we can assume that z = (‖z‖,0, . . . ,0). Let

(
∂

∂x1
, . . . ,

∂

∂xn

)

denote the basis of the tangent space of RPn at [1 : ‖z‖ : 0 : · · · : 0] given
by the partial derivatives in our chart ψx0 (see Subsection 6.1.3). This basis is
orthogonal, but ‖∂/∂x1‖ = (1 + ‖z‖2)−1 and ‖∂/∂xj‖ = (1 + ‖z‖2)−1/2 for all
j ∈ {2, . . . , n}.

The random vectors (t(i)d (0), t
(i)
d (z), L

i1
d (0), L

i1
d (z), . . . , L

in
d (0), L

in
d (z)) for

i∈{1, . . . , r} are independent equidistributed centered Gaussian vectors inR2n+2.
The previous relations, together with Lemma 6.2, show that their common vari-
ance matrix, by blocks of size 2× 2, is

(6.10)




Ad(‖z‖2) (Bd(‖z‖2))t 0 · · · 0

Bd(‖z‖2) Dd(‖z‖2) 0 · · · 0

0 0 Cd(‖z‖2)
...

...
...

. . . 0

0 0 · · · 0 Cd(‖z‖2)




,
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Variance of the Volume of Random Real Algebraic Submanifolds II 1699

where, for all t á 0,

Ad(t) =

 1 (1+ t)−d/2

(1+ t)−d/2 1


 ,(6.11a)

Bd(t) =

 0

√
dt(1+ t)−d/2

−
√
dt(1+ t)−d/2 0


 ,(6.11b)

Cd(t) =

 1 (1+ t)(1−d)/2

(1+ t)(1−d)/2 1


 ,(6.11c)

Dd(t) =

 1 (1+ t − dt)(1+ t)−d/2

(1+ t − dt)(1+ t)−d/2 1


 .(6.11d)

Using the independence and equidistribution of the couples (t(i)d (x), L
(i)
d (x)), we

have

Fd(z) = r
(∑

j,ℓ

E[(L
1j
d (0))

2(L1ℓ
d (z))

2]−n
∑

ℓ

E[(t(1)d (0))
2(L1ℓ

d (z))
2]

− n
∑

j

E[(L
1j
d (0))

2(t(1)d (z))
2]+n2

E[(t(1)d (0))
2(t(1)d (z))

2]
)
.

If (X, Y) is a centered Gaussian vector in R2 such that Var(X) = 1 = Var(Y), then
by Wick’s formula (cf. [1, Lemma 11.6.1]) we have E[X2Y 2] = 9+2E[XY]2. We
apply this relation to each term of the previous sum. Then, by equations (6.10)
and (6.11a)–(6.11d), we have Fd(z) = 2rFd(d‖z‖2), where Fd is defined by

Fd(t) =
(

1+ t
d

)−d ((
1+ t

d
− t

)2

+ (n− 1)
(

1+ t
d

)
− 2nt +n2

)
,

for all t ∈ R. Then, by a change of variable t = d‖z‖2 in equation (6.9),

Jn,r (d) = d−n/2r Vol(Sn−1)(6.12)

×
∫ +∞

t=0
Fd(t)t

(n−2)/2
(

1+ t
d

)−(n+1)/2

dt.

Let t á 0; we then have

Fd(t)t
(n−2)/2

(
1+ t

d

)−(n+1)/2

----------------------------------------------------------------------------------------------------------------------------------------------------→
d→+∞

(t2 − 2t(n+ 1)+n(n+ 1))t(n−2)/2e−t.
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1700 THOMAS LETENDRE & MARTIN PUCHOL

Moreover, for all d ∈ N∗,

∣∣∣∣∣Fd(t)t
(n−2)/2

(
1+ t

d

)−(n+1)/2
∣∣∣∣∣

à

(
1+ t

d

)−d
t(n−2)/2(4t2 + (n+ 1)(3t +n)).

Let d0 > n/2 + 2. Since (1 + t/d)−d is a non-increasing sequence of d, for all
d á d0,

∣∣∣∣∣Fd(t)t
(n−2)/2

(
1+ t

d

)−(n+1)/2
∣∣∣∣∣

à

(
1+ t

d0

)−d0

t(n−2)/2(4t2 + (n+ 1)(3t +n)),

and the righthand side is integrable as a function of t. By Lebesgue’s theorem, we
have

(6.13)
∫ +∞

t=0

Fd(t)t(n−2)/2

(1+ t/d)(n+1)/2
dt

----------------------------------------------------------------------------------------------------------------------------------------------------→
d→+∞

∫ +∞

0
(t2 − 2t(n+ 1)+n(n+ 1))t(n−2)/2e−t dt = Γ

(
n

2
+ 2

)
,

where Γ is Euler’s Gamma function. The conclusion follows from equations (6.8),
(6.12), and (6.13). ❐

APPENDIX A. TECHNICAL COMPUTATIONS FOR SECTION 4

Before proving the technical lemmas of Section 4, we state several estimates that
will be useful in this section and the next. Recall Definitions 4.4, 4.5, and 4.11.
The following hold as t goes to infinity:

a(t) -------------------------------------------------------------------------------------------------------------------------------------------→
t→+∞

−1, b+(t) -------------------------------------------------------------------------------------------------------------------------------------------→
t→+∞

0, b−(t) -------------------------------------------------------------------------------------------------------------------------------------------→
t→+∞

√
2;(A.1)





ui(t) -------------------------------------------------------------------------------------------------------------------------------------------→
t→+∞

1 ∀ i ∈ {1,2},
vi(t) -------------------------------------------------------------------------------------------------------------------------------------------→

t→+∞
1 ∀ i ∈ {1,2,3,4}.(A.2)

The following hold as t goes to 0:

a(t) = 1− t
2
− t

2

8
+O(t3), (b+(t))

2 = 2− t
2
+O(t2),(A.3)

b+(t)b−(t) =
√
t(1+O(t2)), (b−(t))

2 = t
2
+ t

2

8
+O(t3),(A.4)
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Variance of the Volume of Random Real Algebraic Submanifolds II 1701

u1(t) = t +O(t2), u2(t) =
t2

12
+O(t3),(A.5)

v1(t) = 2+O(t), v2(t) =
t3

48
+O(t4),(A.6)

v3(t) = t +O(t2), v4(t) = 2+O(t).(A.7)

Proof of Lemma 4.6. Recall that P is defined by Definition 4.5 and Ω̃ by equa-
tion (4.3). One can check by a direct computation that, for any t ∈ [0,+∞),
P(t) = (A(t)⊗ I2)σ(Q⊗ I2), where

A(t) = 1√
2


b−(t) −b+(t)
b+(t) b−(t)


 , σ =




1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0




and Q = 1√
2


1 −1

1 1


 .

Moreover, these three matrices are orthogonal. Then, we have

σ(Q⊗ I2)Ω̃(t)(Qt ⊗ I2)σ t

= σ




1− e−(1/2)t 0 0 −
√
te−(1/2)t

0 1+ e−(1/2)t
√
te−(1/2)t 0

0
√
te−(1/2)t 1− (1− t)e−(1/2)t 0

−
√
te−(1/2)t 0 0 1+ (1− t)e−(1/2)t



σ t

=




1− e−(1/2)t −
√
te−(1/2)t 0 0

−
√
te−(1/2)t 1+ (1− t)e−(1/2)t 0 0

0 0 1+ e−(1/2)t
√
te−(1/2)t

0 0
√
te−(1/2)t 1− (1− t)e−(1/2)t




= I4 + e−t/2



 1

√
t√

t t − 1


⊗


−1 0

0 1




 ,

where I4 stands for the identity matrix of size 4.
Recalling the definitions of (vi(t))1àià4, b+(t), and b−(t) (see Definitions

4.4 and 4.5), we conclude the proof by checking that

A(t)


 1

√
t√

t t − 1


 (A(t))t =




t

2
−
√

1+
(
t

2

)2

0

0
t

2
+
√

1+
(
t

2

)2



. ❐

Proof of Lemma 4.8. Let z ∈ Rn \ {0}; by equation (4.2) and Lemma 4.3,

det
(
Ω(z)

)
= det

(
Ω′(z)

)r
= det

(
Ω̃(‖z‖2)

)
r(1− e−‖z‖2

)r(n−1),
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1702 THOMAS LETENDRE & MARTIN PUCHOL

and it is enough to prove that det(Ω̃(t)) > 0 whenever t > 0. By Lemma 4.6,

∀ t á 0, det
(
Ω̃(t)

)
= v1(t)v2(t)v3(t)v4(t)(A.8)

= 1− (t2 + 2)e−t + e−2t = f (t),

where the last equality defines f : [0,+∞) → R. We have f (0) = 0 and, for all
t > 0, f ′(t) = e−tg(t) where g(t) = t2 − 2t + 2 − 2e−t . Then, g(0) = 0 and,
for all t > 0, g′(t) = 2(e−t − 1+ t) > 0. Thus, g is positive on (0,+∞), and so
is f . Finally, we have that, for all t > 0, det(Ω̃(t)) > 0. ❐

Proof of Lemma 4.13. Let z ∈ Rn \ {0}; as above, we have

det
(
Λ(z)

)
= det

(
Λ′(z)

)r
= det

(
Λ̃(‖z‖2)

)r
(1− e−‖z‖2

)r(n−1),

and it is enough to prove that det(Λ̃(t)) > 0 whenever t > 0. By Lemma 4.12,

∀ t > 0, det
(
Λ̃(t)

)
= u1(t)u2(t) =

1− (t2 + 2)e−t + e−2t

1− e−t =
det

(
Ω̃(t)

)

1− e−t ,

by equation (A.8). We just proved that det(Ω̃(t)) is positive for every positive t,
hence the result. ❐

Proof of Lemma 4.14. First, recall that Ω(z) = Ω′(z)⊗ Ir (see equation (4.2))
and Λ(z) = Λ′(z) ⊗ Ir (see equation (4.5)). Hence, we only need to prove that
the map z 7 -→ (0 Λ′(z)1/2)Ω′(z)−1/2 is bounded on Rn \ {0}. Then, let z ∈
Rn \ {0}; the matrix of Ω′(z) in the orthonormal basis Bz of R2 ⊗ (R⊕Rn) (see
Subsection 4.2) is given by Lemma 4.3, and the matrix of Ω′(z)−1/2 in Bz is




Ω̃(‖z‖2)−1/2 0

0




1 e−(1/2)‖z‖
2

e−(1/2)‖z‖
2

1




−1/2

⊗ In−1



.

Similarly, by Lemma 4.9, the matrix of ( 0 Λ′(z)1/2 ) in Bz is




0 Λ̃(‖z‖2)1/2 0

0




1 e−(1/2)‖z‖
2

e−(1/2)‖z‖
2

1




1/2

⊗ In−1



.

Thus, our problem reduces to proving that t 7 -→
(
0 Λ̃(t)1/2

)
Ω̃(t)−1/2 is bounded

on (0,+∞).
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Variance of the Volume of Random Real Algebraic Submanifolds II 1703

Recall that, for all t ∈ [0,+∞), P(t) ∈ O4(R) was defined by Definition 4.5.
By Lemmas 4.6 and 4.12, for all t ∈ (0,+∞) we have

(
0 Λ̃(t)1/2

)
Ω̃(t)−1/2

=

0 Qt


u1(t)1/2 0

0 u2(t)1/2


Q


P(t)t

×




v1(t)−1/2 0 0 0

0 v2(t)−1/2 0 0

0 0 v3(t)−1/2 0

0 0 0 v4(t)−1/2



P(t)

=

m1(t) m3(t) m5(t) m6(t)

m2(t) m4(t) m6(t) m5(t)


 ,

where

m1 =
b+b−

4

(
−
√
u2

v1
+
√
u2

v2
−
√
u1

v3
+
√
u1

v4

)
,

m2 =
b+b−

4

(
−
√
u2

v1
+
√
u2

v2
+
√
u1

v3
−
√
u1

v4

)
,

m3 =
b+b−

4

(√
u2

v1
−
√
u2

v2
−
√
u1

v3
+
√
u1

v4

)
,

m4 =
b+b−

4

(√
u2

v1
−
√
u2

v2
+
√
u1

v3
−
√
u1

v4

)
,

m5 =
(b+)2

4

(√
u2

v1
+
√
u1

v3

)
+ (b−)

2

4

(√
u2

v2
+
√
u1

v4

)
,

m6 =
(b+)2

4

(√
u2

v1
−
√
u1

v3

)
+ (b−)

2

4

(√
u2

v2
−
√
u1

v4

)
.

By Lemma 4.8, for all t > 0, the (vi(t))1àià4 are the eigenvalues of a symmetric
positive operator, and hence are positive. Similarly, for all t > 0, u1(t) > 0, and
u2(t) > 0 by Lemma 4.13. Thus, the (mi)1àià6 are well-defined continuous
maps from (0,+∞) to R. By equations (A.1) and (A.2),

mi(t) -------------------------------------------------------------------------------------------------------------------------------------------→
t→+∞

{
0 ∀ i ∈ {1,2,3,4,6},
1 for i = 5.

Moreover, by equations (A.3)–(A.7), for all i ∈ {1,2,5,6}, mi(t) = 1
2 + O(

√
t)

as t goes to 0, and, for any i ∈ {3,4}, mi(t) = − 1
2 + O(

√
t) as t goes to 0.
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1704 THOMAS LETENDRE & MARTIN PUCHOL

Hence, for all i ∈ {1, . . . ,6},mi is a bounded function from (0,+∞) to R, which
concludes the proof. ❐

Proof of Lemma 4.17. Recall that, for all t > 0, the couples (Xij(t), Yij(t))
are independent centered Gaussian vectors in R2. We denote by Λij(t) the vari-
ance matrix of (Xij(t), Yij(t)), which equals Λ̃(t) if j = 1, and


 1 exp−(1/2)t

2

exp−(1/2)t
2

1




otherwise (see Definition 1.5, Lemma 4.16, and Lemma 4.9).
For all i ∈ {1, . . . , r}, j ∈ {1, . . . , n}, and t > 0, we can write


Xij(t)
Yij(t)


 =

√
Λij(t)


Aij
Bij


 ,

where the (Aij) and (Bij) are globally independent real standard Gaussian vari-
ables, not depending on t. Note that by Lemma 4.13, the Λij(t) are positive for
any t > 0. We deduce from Lemma 4.12 that, for any i ∈ {1, . . . , r}, for all t > 0,

√
Λi1(t) =


α(t) β(t)
β(t) α(t)


 ,

√
Λij(t) =


γ(t) δ(t)
δ(t) γ(t)


 , ∀ j ∈ {2, . . . , n},

where

α(t) = 1
2
(
√
u2(t)+

√
u1(t)),

γ(t) = 1
2
(
√

1+ e−(1/2)t2 +
√

1− e−(1/2)t2 ),

(A.9)

β(t) = 1
2
(
√
u2(t)−

√
u1(t)),

δ(t) = 1
2
(
√

1+ e−(1/2)t2 −
√

1− e−(1/2)t2).

(A.10)

We denote Aj = (A1j , . . . , Arj)t the j-th column of A, and similarly Bj =
(B1j , . . . , Brj)t. Then, E[|det⊥(X(t))||det⊥(Y(t))|] = E[Ψ(t,A, B)], where

(A.11) Ψ(t,A, B)
= |det⊥(α(t)A1 + β(t)B1, γ(t)A2 + δ(t)B2, . . . , γ(t)An + δ(t)Bn)|

× |det⊥(β(t)A1 +α(t)B1, δ(t)A2 + γ(t)B2, . . . , δ(t)An + γ(t)Bn)|.
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Variance of the Volume of Random Real Algebraic Submanifolds II 1705

By (A.5), α(t) = 1
2

√
t+O(t) and β(t) = − 1

2

√
t+O(t). We extend continuously

α, β, γ, and δ by α(0) = 0 = β(0) and γ(0) = 1/
√

2 = δ(0). The function Ψ
also extends continuously at t = 0.

Then, α, β, γ, and δ are bounded functions on (0,1], and Ψ is the square root
of a polynomial of degree 4r in (A, B) whose coefficients are bounded functions
of t. In particular, for all t ∈ (0,1], Ψ(t,A, B) is dominated by a polynomial in
(A, B) whose coefficients are independent of t. By Lebesgue’s theorem,

(A.12) E
[
|det⊥(X(t))| |det⊥(Y(t))|

]
-------------------------------------------------------------------------------------------→
t→0

E[Ψ(0, A, B)].

Let j ∈ {2, . . . , n}; we define Xj = (X1j , . . . , Xrj)t as

γ(0)Aj + δ(0)Bj =
1√
2
(Aj + Bj).

Then, the (Xij) with i ∈ {1, . . . , r} and j ∈ {2, . . . , n} are independent real
standard Gaussian variables. Setting X1 = (X11, . . . , Xr1)t = 0, we have

Ψ(0, A, B) = |det⊥(X1, X2, . . . , Xn)|2

= det((X1, X2, . . . , Xn)(X1, X2, . . . , Xn)
t)

=
∑

1àk1<···<kràn
det((Xikj)1ài,jàr )

2,

by the Cauchy-Binet formula. Let 1 à k1 < k2 < · · · < kr à n. If k1 = 1, the
first column of (Xikj )1ài,jàr is zero and its determinant equals 0. Otherwise,

(A.13) E[det((Xikj)1ài,jàr)
2] =

∑

σ,τ∈Sr
ε(σ)ε(τ)

r∏

i=1

E[Xikσ(i)Xikτ(i)] = r !.

Hence, if r < n,

E[Ψ(0, A, B)] = r !

(
n− 1
r

)
= (n− 1)!
(n− r − 1)!

,

and by equation (A.12), we have proven Lemma 4.17 in this case. If r = n, we
have E[Ψ(0, A, B)] = 0 and must be more precise.

Let us now assume that r = n. Then, X and Y are square matrices and their
Jacobians are simply the absolute values of their determinants. For all t > 0,

(A.14) Ψ(t,A, B)

= t
2

∣∣∣∣∣∣
det



√

2
t
α(t)A1 +

√
2
t
β(t)B1, γ(t)A2 + δ(t)B2, . . . , γ(t)An + δ(t)Bn



∣∣∣∣∣∣

×

∣∣∣∣∣∣
det



√

2
t
β(t)A1 +

√
2
t
α(t)B1, δ(t)A2 + γ(t)B2, . . . , δ(t)An + γ(t)Bn



∣∣∣∣∣∣
.
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1706 THOMAS LETENDRE & MARTIN PUCHOL

By equation (A.5),
√

2/tα(t) = 1/
√

2+O(
√
t) and

√
2/tβ(t) = −1/

√
2+O(

√
t).

We can apply the same kind of argument as above. By Lebesgue’s theorem,

2
t
E[Ψ(t,A, B)] -------------------------------------------------------------------------------------------→

t→0
E
[
|det(Y1, X2, . . . , Xn)| |det(−Y1, X2, . . . , Xn)|

]

= E[det(Y1, X2, . . . , Xn)
2],

where Y1 = (Y11, . . . , Yr1)t = (1/
√

2)(A1 − B1). Since Y1, X2, . . . , Xn are in-
dependent N (Id) in Rr , the same computation as equation (A.13) shows that
E[det(Y1, X2, . . . , Xn)2] = r ! = n!. Hence, if r = n, we have

E
[
|det⊥(X(t))| |det⊥(Y(t))|

]
= E[Ψ(t,A, B)] ∼ n!

2
t, as t → 0. ❐

Proof of Lemma 4.18. For any t > 0, let us denote by

(A.15) Λ̂(t) =




Λ̃(t) 0

0


 1 exp−(1/2)t

2

exp−(1/2)t
2

1


⊗ In−1


⊗ Ir

the variance matrix of (X(t), Y(t)).
In the following, we denote a generic element of Mrn(R)×Mrn(R) by L =

(X, Y). We have

(A.16) E
[
|det⊥(X(t))| |det⊥(Y(t))|

]
= 1
(2π)rn

det
(
Λ̂(t)

)−1/2

×
∫
|det⊥(X)| |det⊥(Y)| exp

(
−1

2

〈(
Λ̂(t)

)−1
L, L

�)
dL.

By Lemma 4.12, we have Λ̂(t) = Id+O(te−t/2) as t → +∞. Then, we have
det(Λ̂(t))−1/2 = 1+O(te−t/2). Moreover, by the Mean Value Theorem,

∣∣∣∣exp
(
−1

2

〈(
Λ̂(t)

)−1
L, L

�)
− e−(1/2)‖L‖2

∣∣∣∣

= e−(1/2)‖L‖2

∣∣∣∣exp
(
−1

2

〈((
Λ̂(t)

)−1
− Id

)
L, L

�)
− 1

∣∣∣∣

à e−(1/2)‖L‖
2 ‖L‖2

2

∥∥∥∥
(
Λ̂(t)

)−1
− Id

∥∥∥∥ exp

(
‖L‖2

2

∥∥∥∥
(
Λ̂(t)

)−1
− Id

∥∥∥∥

)
.

Then, since (Λ̂(t))−1 = Id+O(te−t/2), this last term is smaller than

e−(1/4)‖L‖
2 ‖L‖2

2

∥∥∥∥
(
Λ̂(t)

)−1
− Id

∥∥∥∥
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Variance of the Volume of Random Real Algebraic Submanifolds II 1707

for all t large enough. Hence,

∫
|det⊥(X)| |det⊥(Y)|

∣∣∣∣exp
(
−1

2

〈(
Λ̂(t)

)−1
L, L

�)
− e−(1/2)‖L‖2

∣∣∣∣ dL

à
1
2

∥∥∥∥
(
Λ̂(t)

)−1
− Id

∥∥∥∥
∫
|det⊥(X)| |det⊥(Y)| ‖L‖2e−(1/4)‖L‖

2
dL

= O(te−t/2).

Thanks to this relation and equation (A.16), we get that

E
[
|det⊥(X(t))| |det⊥(Y(t))|

]

= E
[
|det⊥(X(∞))| |det⊥(Y(∞))|

]
+O(te−t/2),

where (X(∞), Y(∞)) ∼ N (Id) in Mrn(R)×Mrn(R). Finally, by Lemma A.14
of [21],

E
[
|det⊥(X(∞))| |det⊥(Y(∞))|

]

= E
[
|det⊥(X(∞))|

]2 = (2π)r
(

Vol(Sn−r)
Vol(Sn)

)2

. ❐

APPENDIX B. TECHNICAL COMPUTATIONS FOR SECTION 5

Proof of Lemma 5.26. Let α ∈ (0,1); we want to prove that

Θ(z)−1/2Θd(z)Θ(z)−1/2 − Id = O(d−α)

uniformly for x ∈M and z ∈ BTxM(0, bn lnd). Recall that

Q = 1√
2


1 −1

1 1


 .

Since Q ∈ O2(R), it is equivalent to prove that

(Q⊗ IdR(E⊗Ld)x )Θ(z)
−1/2(Θd(z)−Θ(z))(B.1)

× Θ(z)−1/2(Q⊗ IdR(E⊗Ld)x)
−1 = O(d−α).

Recall that ed was defined by equation (3.1) and e∞ = ξ IdR(E⊗Ld)x (see
Section 4). We set εd(w, z) = ed(w, z) − e∞(w, z), for any d ∈ N, for all
x ∈ M , and for all w,z ∈ BTxM(0, bn lnd). By equations (4.1) and (5.7) we have

Θd(z)−Θ(z) =

εd(0,0) εd(0, z)
εd(z,0) εd(z, z)


 .
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1708 THOMAS LETENDRE & MARTIN PUCHOL

Then, by Lemma 4.1, for all x ∈M and z ∈ BTxM(0, bn lnd) \ {0} we have

(Q⊗ IdR(E⊗Ld)x)Θ(z)
−1/2(Θd(z)−Θ(z))

× Θ(z)−1/2(Q⊗ IdR(E⊗Ld)x )
−1 =


ad(z) bd(z)

∗

bd(z) cd(z)


 ,

where

ad(z) =
1
2
(1− e−(1/2)‖z‖2

)−1(εd(z, z)− εd(z,0)− εd(0, z)+ εd(0,0)),

bd(z) = −
1
2
(1− e−‖z‖2

)−1/2(εd(z, z)− εd(z,0)+ εd(0, z)− εd(0,0)),

cd(z) =
1
2
(1+ e−(1/2)‖z‖2

)−1(εd(z, z)+ εd(z,0)+ εd(0, z)+ εd(0,0)).

Let β ∈ (α,1); by Proposition 3.4 we have ‖D2
(w,z)εd‖ à Cd−β, where C is

independent of x ∈ M andw,z ∈ BTxM(0, bn lnd). Then, a second-order Taylor
expansion around (0,0) gives

‖εd(z, z)− εd(z,0)− εd(0, z)+ εd(0,0)‖ à C‖z‖2d−β.

Since we consider z ∈ BTxM(0, bn lnd) and 1 − e−(1/2)‖z‖2 ∼ ‖z‖2/2 as z → 0,
we have

‖ad(z)‖ à
C‖z‖2d−β

2(1− e−(1/2)‖z‖2)
= O((lnd)2d−β) = O(d−α),

where the error term does not depend on (x, z). We obtain equation (B.1) by
reasoning similarly for bd(z) and cd(z). ❐

Proof of Lemma 5.28. The idea of the proof is the same as that of Lemma 5.26
above. Let α ∈ (0,1); we want to prove that

(B.2) Ω(z)−1/2(Ωd(z)−Ω(z))Ω(z)−1/2 = O(d−α).

Recall that we defined εd(w, z) = ed(w, z) − e∞(w, z) for any x ∈ M and
w,z ∈ BTxM(0, bn lnd). We can express Ωd(z) − Ω(z) in terms of εd and its
derivatives. Then, we write the matrix of the lefthand side of equation (B.2) in
an orthonormal basis that diagonalizes Ω(z). The coefficients of this matrix are
linear combinations of εd and its derivatives. We will prove that they are O(d−α)
using Taylor expansions and the estimates of Subsection 3.3.

The details are longer than in the proof of Lemma 5.26 for two reasons. First,
the basis in which Ω(z) is diagonal now depends on z. Second, some of the
eigenvalues of Ω(z) are O(‖z‖6) as z → 0, so that we need to consider Taylor
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Variance of the Volume of Random Real Algebraic Submanifolds II 1709

expansions of order 6 for some coefficients. In addition, the matrices involved are
less easily described than in the proof of Lemma 5.26.

Recall that ed was defined by equation (3.1) and that e∞ = ξ IdR(E⊗Ld)x (see
Section 4). We expressed Ω(z) in terms of e∞ in equation (4.2) and Ωd(z) in
terms of ed in equation (5.8). As an operator on

R(E ⊗Ld)x ⊕R(E ⊗Ld)x ⊕ (T∗xM ⊗R(E ⊗ Ld)x)⊕ (T∗xM ⊗R(E ⊗Ld)x),

we have

Ωd(z)−Ω(z) =




εd(0,0) εd(0, z) ∂♯yεd(0,0) ∂♯yεd(0, z)

εd(z,0) εd(z, z) ∂♯yεd(z,0) ∂♯yεd(z, z)

∂xεd(0,0) ∂xεd(0, z) ∂x ∂
♯
yεd(0,0) ∂x ∂

♯
yεd(0, z)

∂xεd(z,0) ∂xεd(z, z) ∂x ∂
♯
yεd(z,0) ∂x ∂

♯
yεd(z, z)



.

Let us choose an orthonormal basis (∂/∂x1, . . . , ∂/∂xn) of TxM such that z =
‖z‖ ∂/∂x1. We denote by (dx1, . . . ,dxn) its dual basis. We can then define a
basis ofR2⊗(R⊕T∗xM) similar toBz (see Subsection 4.2). For any i ∈ {1, . . . , n},
we denote by ∂xi (respectively, ∂yi) the partial derivative with respect to the i-th
component of the first (respectively, second) variable for maps from TxM × TxM
to End(R(E⊗Ld)x). Then, we can split Ωd(z)−Ω(z) according to the previous
basis in the following way:

(B.3) Ωd(z)−Ω(z) =




Ad(z) B
(1)
d (z)

∗ · · · B(n)d (z)∗

B(1)d (z) C
(11)
d (z) · · · C

(1n)
d (z)

...
...

. . .
...

B(n)d (z) C(n1)
d (z) · · · C

(nn)
d (z)



,

where

Ad(z) =

εd(0,0) εd(0, z)
εd(z,0) εd(z, z)


 ,(B.4)

B(i)d (z) =

∂xiεd(0,0) ∂xiεd(0, z)
∂xiεd(z,0) ∂xiεd(z, z)


 , ∀ i ∈ {1, . . . , n},(B.5)

C
(ij)
d (z) =


∂xi ∂

♯
yjεd(0,0) ∂xi ∂

♯
yjεd(0, z)

∂xi ∂
♯
yjεd(z,0) ∂xi ∂

♯
yjεd(z, z)


 , ∀ i, j ∈ {1, . . . , n}, .(B.6)

Let us denote by P(z) the operator whose matrix in our basis is

P(‖z‖

2) 0

0 Q⊗ In−1


⊗ Ir ,
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1710 THOMAS LETENDRE & MARTIN PUCHOL

where P was defined by Definition 4.5 and Q = (1/
√

2)
(

1 −1
1 1

)
. Since P(z) is

orthogonal, (B.2) is equivalent to the following:

(B.7) P(z)Ω(z)−1/2(Ωd(z)−Ω(z))Ω(z)−1/2P(z)−1 = O(d−α).

By Lemma 4.7, the matrix of P(z)Ω(z)−1/2P(z)−1 is
(
V(z) 0

0 N(z)⊗In−1

)
, where

V(z) =




v1(‖z‖2)−1/2 0 0 0

0 v2(‖z‖2)−1/2 0 0

0 0 v3(‖z‖2)−1/2 0

0 0 0 v4(‖z‖2)−1/2



⊗ Ir ,

N(z) =

(1− e

−(1/2)‖z‖2
)−1/2 0

0 (1+ e−(1/2)‖z‖2
)−1/2


⊗ Ir .

On the other hand, by equation (B.3),

P(z)(Ωd(z)−Ω(z))P(z)−1 =




Ãd(z) B̃
(1)
d (z)

∗ · · · B̃(n)d (z)∗

B̃(1)d (z) C̃
(11)
d (z) · · · C̃

(1n)
d (z)

...
...

. . .
...

B̃(n)d (z) C̃(n1)
d (z) · · · C̃

(nn)
d (z)



,

where

 Ãd(z) B̃

(1)
d (z)

∗

B̃(1)d (z) C̃
(11)
d (z)


 = (P(‖z‖2)⊗ Id)


Ad(z) B

(1)
d (z)

∗

B(1)d (z) C
(11)
d (z)


(B.8)

× (P(‖z‖2)t ⊗ Id),
(
B̃(i)d (z) C̃

(i1)
d (z)

)
= (Q⊗ Id)

(
B(i)d (z) C

(i1)
d (z)

)
(B.9)

× (P(‖z‖2)t ⊗ Id), ∀ i ∈ {2, . . . , n},

C̃
(ij)
d (z) = (Q⊗ Id)C(ij)d (z)(Qt ⊗ Id), ∀ i, j ∈ {2, . . . , n}.(B.10)

Then, in order to prove equation (B.7), we have to prove that

V(z)


 Ãd(z) B̃

(1)
d (z)

∗

B̃(1)d (z) C̃
(11)
d (z)


V(z) = O(d−α),(B.11)

N(z)
(
B̃(i)d (z) C̃

(i1)
d (z)

)
V(z) = O(d−α), ∀ i ∈ {2, . . . , n},(B.12)

N(z)C̃
(ij)
d (z)N(z) = O(d−α), ∀ i, j ∈ {2, . . . , n}.(B.13)
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Variance of the Volume of Random Real Algebraic Submanifolds II 1711

Since these are heavy computations, we do not reproduce them in totality
here. In the following, we give some details about the proof of (B.11), which is
the most difficult of these three relations to establish. The proofs of (B.12) and
(B.13) are similar and left to the fearless reader.

Let us focus on the proof of (B.11). We denote

V(z)


 Ãd(z) B̃

(1)
d (z)

∗

B̃(1)d (z) C̃
(11)
d (z)


V(z) =




a(1)d a(2)∗d b(1)∗d b(2)∗d

a(2)d a(3)d b(3)∗d b(4)∗d

b(1)d b(3)d c(1)d c(2)∗d

b(2)d b(4)d c(2)d c(3)d



.

Then, by Definition 4.5 and equations (B.4), (B.5), (B.6), and (B.8), we have

(B.14) a(1)d (z) =
1
4
(v1(‖z‖2))−1

(
(b+(‖z‖2))2

×
(
∂x1 ∂

♯
y1
εd(z, z)+ ∂x1 ∂

♯
y1
εd(z,0)+ ∂x1 ∂

♯
y1
εd(0, z)+ ∂x1 ∂

♯
y1
εd(0,0)

)

+ b+(‖z‖2)b−(‖z‖2)
(
∂x1εd(z, z)− ∂x1εd(z,0)+ ∂x1εd(0, z)− ∂x1εd(0,0)

)

+ b+(‖z‖2)b−(‖z‖2)
(
∂♯y1
εd(z, z)+ ∂♯y1

εd(z,0)− ∂♯y1
εd(0, z)− ∂♯y1

εd(0,0)
)

+ (b−(‖z‖2))2
(
εd(z, z)− εd(z,0)− εd(0, z)+ εd(0,0)

))
,

(B.15) a(2)d (z) =
1
4
(v1(‖z‖2)v2(‖z‖2))−1/2

(
− b+(‖z‖2)b−(‖z‖2)

×
(
∂x1 ∂

♯
y1
εd(z, z)+ ∂x1 ∂

♯
y1
εd(z,0)+ ∂x1 ∂

♯
y1
εd(0, z)+ ∂x1 ∂

♯
y1
εd(0,0)

)

− (b−(‖z‖2))2
(
∂x1εd(z, z)− ∂x1εd(z,0)+ ∂x1εd(0, z)− ∂x1εd(0,0)

)

+ (b+(‖z‖2))2
(
∂♯y1
εd(z, z)+ ∂♯y1

εd(z,0)− ∂♯y1
εd(0, z)− ∂♯y1

εd(0,0)
)

+ b+(‖z‖2)b−(‖z‖2)
(
εd(z, z)− εd(z,0)− εd(0, z)+ εd(0,0)

))
,

(B.16) a(3)d (z) =
1
4
(v2(‖z‖2))−1

(
(b−(‖z‖2))2

×
(
∂x1 ∂

♯
y1
εd(z, z)+ ∂x1 ∂

♯
y1
εd(z,0)+ ∂x1 ∂

♯
y1
εd(0, z)+ ∂x1 ∂

♯
y1
εd(0,0)

)

− b+(‖z‖2)b−(‖z‖2)
(
∂x1εd(z, z)− ∂x1εd(z,0)+ ∂x1εd(0, z)− ∂x1εd(0,0)

)

− b+(‖z‖2)b−(‖z‖2)
(
∂♯y1
εd(z, z)+ ∂♯y1

εd(z,0)− ∂♯y1
εd(0, z)− ∂♯y1

εd(0,0)
)

+ (b+(‖z‖2))2
(
εd(z, z)− εd(z,0)− εd(0, z)+ εd(0,0)

))
,
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1712 THOMAS LETENDRE & MARTIN PUCHOL

(B.17) b(1)d (z) =
1
4
(v1(‖z‖2)v3(‖z‖2))−1/2

(
− (b+(‖z‖2))2

×
(
∂x1 ∂

♯
y1
εd(z, z)+ ∂x1 ∂

♯
y1
εd(z,0)− ∂x1 ∂

♯
y1
εd(0, z)− ∂x1 ∂

♯
y1
εd(0,0)

)

− b+(‖z‖2)b−(‖z‖2)
(
∂x1εd(z, z)− ∂x1εd(z,0)− ∂x1εd(0, z)+ ∂x1εd(0,0)

)

− b+(‖z‖2)b−(‖z‖2)
(
∂♯y1
εd(z, z)+ ∂♯y1

εd(z,0)+ ∂♯y1
εd(0, z)+ ∂♯y1

εd(0,0)
)

− (b−(‖z‖2))2
(
εd(z, z)− εd(z,0)+ εd(0, z)− εd(0,0)

))
,

(B.18) b(2)d (z) =
1
4
(v1(‖z‖2)v4(‖z‖2))−1/2

(
b+(‖z‖2)b−(‖z‖2)

×
(
∂x1∂

♯
y1
εd(z, z)+ ∂x1 ∂

♯
y1
εd(z,0)− ∂x1∂

♯
y1
εd(0, z)− ∂x1∂

♯
y1
εd(0,0)

)

+ (b−(‖z‖2))2
(
∂x1εd(z, z)− ∂x1εd(z,0)− ∂x1εd(0, z)+ ∂x1εd(0,0)

)

− (b+(‖z‖2))2
(
∂♯y1
εd(z, z)+ ∂♯y1

εd(z,0)+ ∂♯y1
εd(0, z)+ ∂♯y1

εd(0,0)
)

− b+(‖z‖2)b−(‖z‖2)
(
εd(z, z)− εd(z,0)+ εd(0, z)− εd(0,0)

))
,

(B.19) b(3)d (z) =
1
4
(v2(‖z‖2)v3(‖z‖2))−1/2

(
b+(‖z‖2)b−(‖z‖2)

×
(
∂x1 ∂

♯
y1
εd(z, z)+ ∂x1 ∂

♯
y1
εd(z,0)− ∂x1 ∂

♯
y1
εd(0, z)− ∂x1 ∂

♯
y1
εd(0,0)

)

− (b+(‖z‖2))2
(
∂x1εd(z, z)− ∂x1εd(z,0)− ∂x1εd(0, z)+ ∂x1εd(0,0)

)

+ (b−(‖z‖2))2
(
∂♯y1
εd(z, z)+ ∂♯y1

εd(z,0)+ ∂♯y1
εd(0, z)+ ∂♯y1

εd(0,0)
)

− b+(‖z‖2)b−(‖z‖2)
(
εd(z, z)− εd(z,0)+ εd(0, z)− εd(0,0)

))
,

(B.20) b(4)d (z) =
1
4
(v2(‖z‖2)v4(‖z‖2))−1/2

(
− (b−(‖z‖2))2

×
(
∂x1 ∂

♯
y1
εd(z, z)+ ∂x1 ∂

♯
y1
εd(z,0)− ∂x1 ∂

♯
y1
εd(0, z)− ∂x1 ∂

♯
y1
εd(0,0)

)

+ b+(‖z‖2)b−(‖z‖2)
(
∂x1εd(z, z)− ∂x1εd(z,0)− ∂x1εd(0, z)+ ∂x1εd(0,0)

)

+ b+(‖z‖2)b−(‖z‖2)
(
∂♯y1
εd(z, z)+ ∂♯y1

εd(z,0)+ ∂♯y1
εd(0, z)+ ∂♯y1

εd(0,0)
)

− (b+(‖z‖2))2
(
εd(z, z)− εd(z,0)+ εd(0, z)− εd(0,0)

))
,
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Variance of the Volume of Random Real Algebraic Submanifolds II 1713

(B.21) c(1)d (z) =
1
4
(v3(‖z‖2))−1

(
(b+(‖z‖2))2

×
(
∂x1 ∂

♯
y1
εd(z, z)− ∂x1 ∂

♯
y1
εd(z,0)− ∂x1 ∂

♯
y1
εd(0, z)+ ∂x1 ∂

♯
y1
εd(0,0)

)

+ b+(‖z‖2)b−(‖z‖2)
(
∂x1εd(z, z)+ ∂x1εd(z,0)− ∂x1εd(0, z)− ∂x1εd(0,0)

)

+ b+(‖z‖2)b−(‖z‖2)
(
∂♯y1
εd(z, z)− ∂♯y1

εd(z,0)+ ∂♯y1
εd(0, z)− ∂♯y1

εd(0,0)
)

+ (b−(‖z‖2))2
(
εd(z, z)+ εd(z,0)+ εd(0, z)+ εd(0,0)

))
,

(B.22) c(2)d (z) =
1
4
(v3(‖z‖2)v4(‖z‖2))−1/2

(
− b+(‖z‖2)b−(‖z‖2)

×
(
∂x1 ∂

♯
y1
εd(z, z)− ∂x1 ∂

♯
y1
εd(z,0)− ∂x1 ∂

♯
y1
εd(0, z)+ ∂x1 ∂

♯
y1
εd(0,0)

)

− (b−(‖z‖2))2
(
∂x1εd(z, z)+ ∂x1εd(z,0)− ∂x1εd(0, z)− ∂x1εd(0,0)

)

+ (b+(‖z‖2))2
(
∂♯y1
εd(z, z)− ∂♯y1

εd(z,0)+ ∂♯y1
εd(0, z)− ∂♯y1

εd(0,0)
)

+ b+(‖z‖2)b−(‖z‖2)
(
εd(z, z)+ εd(z,0)+ εd(0, z)+ εd(0,0)

))
,

(B.23) c(3)d (z) =
1
4
(v4(‖z‖2))−1

(
(b−(‖z‖2))2

×
(
∂x1 ∂

♯
y1
εd(z, z)− ∂x1 ∂

♯
y1
εd(z,0)− ∂x1 ∂

♯
y1
εd(0, z)+ ∂x1 ∂

♯
y1
εd(0,0)

)

− b+(‖z‖2)b−(‖z‖2)
(
∂x1εd(z, z)+ ∂x1εd(z,0)− ∂x1εd(0, z)− ∂x1εd(0,0)

)

− b+(‖z‖2)b−(‖z‖2)
(
∂♯y1
εd(z, z)− ∂♯y1

εd(z,0)+ ∂♯y1
εd(0, z)− ∂♯y1

εd(0,0)
)

+ (b+(‖z‖2))2
(
εd(z, z)+ εd(z,0)+ εd(0, z)+ εd(0,0)

))
.

We need to prove that each one of the terms (B.14) to (B.23) is a O(d−α), where
the constant involved in this notation is independent of (x, z). The main diffi-
culty comes from the fact that v2 and v3 converge to 0 as z → 0 (see equations
(A.6) and (A.7)).

The term with the worst apparent singularity at z = 0 is a(3)d (see (B.16)).

We will show below that a(3)d (z) = O(d−α) uniformly in (x, z). The proofs that
the other nine coefficients are O(d−α) follow the same lines, and they are strictly
easier technically. We leave them to the reader.

By equation (A.6), v2(‖z‖2) ∼ ‖z‖6/48 as z → 0. Hence, we have to expand
the second factor in (B.16) up to a O(‖z‖6). Let β ∈ (α,1), and recall that, by
Proposition 3.4, the partial derivatives of εd of order up to 6 areO(d−β) uniformly
on BTxM(0, bn lnd)×BTxM(0, bn lnd). Recall also that we chose our coordinates
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1714 THOMAS LETENDRE & MARTIN PUCHOL

so that z = (‖z‖,0, . . . ,0). Using Taylor expansions around (0,0) for εd and its
derivatives, we get

(B.24) ∂x1 ∂
♯
y1
εd(z, z)

+ ∂x1 ∂
♯
y1
εd(z,0)+ ∂x1 ∂

♯
y1
εd(0, z)+ ∂x1∂

♯
y1
εd(0,0)

= 4∂x1∂
♯
y1
εd(0,0)+ 2‖z‖

(
∂2
x1
∂♯y1
εd(0,0)+ ∂x1

(
∂♯y1

)2
εd(0,0)

)

+ ‖z‖2(∂3
x1
∂♯y1
εd(0,0)+ ∂2

x1
(∂♯y1

)2εd(0,0)+ ∂x1(∂
♯
y1
)3εd(0,0)

)

+ ‖z‖3
(

1
3
∂4
x1
∂♯y1
εd(0,0)+

1
2
∂3
x1
(∂♯y1

)2εd(0,0)

+ 1
2
∂2
x1
(∂♯y1

)3εd(0,0)+
1
3
∂x1(∂

♯
y1
)4εd(0,0)

)
+ ‖z‖4O(d−β),

(B.25) ∂x1εd(z, z)− ∂x1εd(z,0)+ ∂x1εd(0, z)− ∂x1εd(0,0)

= 2‖z‖ ∂x1 ∂
♯
y1
εd(0,0)+ ‖z‖2(∂2

x1
∂♯y1
εd(0,0)+ ∂x1(∂

♯
y1
)2εd(0,0))

+ ‖z‖3
(

1
2
∂3
x1
∂♯y1
εd(0,0)+

1
2
∂2
x1
(∂♯y1

)2εd(0,0)+
1
3
∂x1(∂

♯
y1
)3εd(0,0)

)

+ ‖z‖4
(

1
6
∂4
x1
∂♯y1
εd(0,0)+

1
4
∂3
x1
(∂♯y1

)2εd(0,0)

+ 1
6
∂2
x1
(∂♯y1

)3εd(0,0)+
1
12
∂x1(∂

♯
y1
)4εd(0,0)

)
+ ‖z‖5O(d−β),

(B.26) ∂♯y1
εd(z, z)+ ∂♯y1

εd(z,0)− ∂♯y1
εd(0, z)− ∂♯y1

εd(0,0)

= 2‖z‖ ∂x1 ∂
♯
y1
εd(0,0)+ ‖z‖2(∂2

x1
∂♯y1
εd(0,0)+ ∂x1(∂

♯
y1
)2εd(0,0))

+ ‖z‖3
(

1
3
∂3
x1
∂♯y1
εd(0,0)+

1
2
∂2
x1
(∂♯y1

)2εd(0,0)+
1
2
∂x1(∂

♯
y1
)3εd(0,0)

)

+ ‖z‖4
(

1
12
∂4
x1
∂♯y1
εd(0,0)+

1
6
∂3
x1
(∂♯y1

)2εd(0,0)

+ 1
4
∂2
x1
(∂♯y1

)3εd(0,0)+
1
6
∂x1(∂

♯
y1
)4εd(0,0)

)
+ ‖z‖5O(d−β),

(B.27) εd(z, z)− εd(z,0)− εd(0, z)+ εd(0,0)

= ‖z‖2 ∂x1 ∂
♯
y1
εd(0,0)+ ‖z‖3

(
1
2
∂2
x1
∂♯y1
εd(0,0)+

1
2
∂x1(∂

♯
y1
)2εd(0,0)

)

+ ‖z‖4
(

1
6
∂3
x1
∂♯y1
εd(0,0)+

1
4
∂2
x1
(∂♯y1

)2εd(0,0)+
1
6
∂x1(∂

♯
y1
)3εd(0,0)

)

+ ‖z‖5
(

1
24
∂4
x1
∂♯y1
εd(0,0)+

1
12
∂3
x1
(∂♯y1

)2εd(0,0)

+ 1
12
∂2
x1
(∂♯y1

)3εd(0,0)+
1
24
∂x1(∂

♯
y1
)4εd(0,0)

)
+ ‖z‖6O(d−β).
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Variance of the Volume of Random Real Algebraic Submanifolds II 1715

Now, we can combine equations (B.24), (B.25), (B.26), and (B.27) with
the expansions around 0 of (b+(‖z‖2))2 (cf. equation (A.3)), (b−(‖z‖2))2, and
b+(‖z‖2)b−(‖z‖2) (cf. equation (A.4)). Using Proposition 3.4 once again, we
obtain

a(3)d (z) =
1

4v2(‖z‖2)
‖z‖6O(d−β) = O((lnd)6d−β) = O(d−α),

where we used equations (A.2), (A.6), and the fact that ‖z‖ à bn lnd. This

concludes the proof for a(3)d . As we already explained, we proceed similarly for
the other nine coefficients to get (B.11), and the same kind of computations yield
(B.12) and (B.13). ❐

Proof of Lemma 5.30. Let α ∈ (0,1), x ∈ M , and z ∈ BTxM(0, bn lnd)\{0}.
We will denote by L = (X, Y) a generic element of R2⊗T∗xM ⊗R(E ⊗Ld)x . We
also set χ(L) = |det⊥(X)| |det⊥(Y)|. We have

(B.28) E
[
|det⊥(Xd(z))| |det⊥(Yd(z))|

]
=

= 1
(2π)rn

det (Λd(z))−1/2
∫
χ(L) exp

(
−1

2
〈Λd(z)−1L, L〉

)
dL

= 1
(2π)rn

(
detΛ(z)
detΛd(z)

)1/2

×
∫
χ(Λ(z)1/2L) exp

(
−1

2
〈Λ(z)1/2Λd(z)−1Λ(z)1/2L, L〉

)
dL,

by a change of variable. By Lemma 5.29, we have

detΛd(z) = (detΛ(z))(1 +O(d−α)).

If we set Ξd(z) = Λ(z)1/2Λd(z)−1Λ(z)1/2 − Id, then Ξd(z) = O(d−α), and
these estimates are uniform in (x, z). As in the proof of Lemma 4.18, by the
Mean Value Theorem, for all L we have

∣∣∣∣exp
(
−1

2
〈Ξd(z)L, L〉

)
− 1

∣∣∣∣ à
1
2
‖L‖2 ‖Ξd(z)‖ exp

(
1
2
‖L‖2 ‖Ξd(z)‖

)
.

Since Ξd(z) = O(d−α), for d large enough ‖Ξd(z)‖ à 1
2 . Hence,

∫
χ(Λ(z)1/2L)e−(1/2)‖L‖2

∣∣∣∣exp
(
−1

2
〈Ξd(z)L, L〉

)
− 1

∣∣∣∣ dL(B.29)

à
‖Ξd(z)‖

2

∫
χ(Λ(z)1/2L)‖L‖2e−(1/4)‖L‖

2
dL.

Recall that, by Lemma 4.12, the eigenvalues of the positive symmetric op-
erator Λ(z) are u1(‖z‖2), u2(‖z‖2), 1 + exp(− 1

2‖z‖2), and 1 − exp(− 1
2‖z‖2),
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1716 THOMAS LETENDRE & MARTIN PUCHOL

with some multiplicities. These are bounded functions of z (see equations (A.2)
and (A.5)). Hence, χ(Λ(z)1/2L) is the square root of a polynomial in L whose
coefficients are bounded functions of z. Thus, the integral on the righthand side
of equation (B.29) is bounded, independently of (x, z). We get

∫
χ(Λ(z)1/2L) exp

(
−1

2
〈Λ(z)1/2Λd(z)−1Λ(z)1/2L, L〉

)
dL

=
∫
χ(Λ(z)1/2L)e−(1/2)‖L‖2

dL+O(d−α)

= (2π)rnE
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]
+O(d−α).

Finally, by equation (B.28), we find

E
[
|det⊥(Xd(z))| |det⊥(Yd(z))|

]
(B.30)

= E
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]
+O(d−α).

By Lemma 4.13, for all z ≠ 0, Λ(z) is non-singular. Hence,

E
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]

is a positive function of z. By Lemma 4.16,

E
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]

= E
[
|det⊥(X(‖z‖2))| |det⊥(Y(‖z‖2))|

]
,

and by Lemmas 4.17 and 4.18, if r < n, this quantity admits positive limits when
‖z‖ goes to 0 or ‖z‖ goes to +∞. Thus, in this case,

E
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]

is bounded from below by a positive constant, independent of (x, z). Then,
equation (B.30) shows that

E
[
|det⊥(Xd(z))| |det⊥(Yd(z))|

]

= E
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]
(1+O(d−α)),

and this concludes the proof for r < n.
If r = n, the leading term in equation (B.30) goes to 0 as ‖z‖ → 0, so that

we need to be more precise. From now on, we assume r = n. Let us assume for
now that, in this case, we have

(B.31)
∫
χ(Λ(z)1/2L)‖L‖2e−(1/4)‖L‖

2
dL = O(‖z‖2) as z → 0,
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Variance of the Volume of Random Real Algebraic Submanifolds II 1717

where the constant involved in the O(‖z‖2) is uniform in (x, z). Then, pro-
ceeding as we did in the case r < n, we get the following equivalent of equation
(B.30):

E
[
|det⊥(Xd(z))| |det⊥(Yd(z))|

]

= E
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]
+O(‖z‖2d−α).

By Lemma 4.17,

E
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]

= E
[
|det⊥(X(‖z‖2))| |det⊥(Y(‖z‖2))|

]
∼ n!

2
‖z‖2,

as z → 0. Hence,

E
[
|det⊥(Xd(z))| |det⊥(Yd(z))|

]

= E
[
|det⊥(X∞(z))| |det⊥(Y∞(z))|

]
(1+O(d−α))

uniformly for x ∈M and ‖z‖ à 1. In the domain ‖z‖ á 1,

E[|det⊥(X∞(z))| |det⊥(Y∞(z))|]

is bounded from below by a positive constant independent of (x, z), and we pro-
ceed as in the case r < n, using equation (B.30). This yields the result for r = n.

To conclude the proof, we still have to prove that (B.31) holds when r = n.
Let us write L = (A, B) and Λ(z)1/2L = (X(z), Y(z)) with A, B, X(z), and
Y(z) ∈ T∗xM⊗R(E⊗Ld)x . We choose any orthonormal basis of R(E⊗Ld)x and
an orthonormal basis of TxM such that the coordinates of z are (‖z‖,0, . . . ,0).
We denote by (Aij), (Bij), (Xij(z)), and (Yij(z)) ∈Mrn(R) the matrices of A,
B, X(z), and Y(z) in these bases.

The matrix of Λ(z) in the basis defined by B′z (see Subsection 4.3) and our

basis of R(E ⊗ Ld)x is Λ̂(‖z‖2), where Λ̂ was defined by equation (A.15). That
is, using the same notation as in the proof of Lemma 4.17 (see equations (A.9)
and (A.10)), for all i ∈ {1, . . . , r},

(
Xi1
Yi1

)
=

α(‖z‖

2) β(‖z‖2)

β(‖z‖2) α(‖z‖2)



(
Ai1
Bi1

)

and
(
Xij
Yij

)
=

γ(‖z‖

2) δ(‖z‖2)

δ(‖z‖2) γ(‖z‖2)



(
Aij
Bij

)
, ∀ j á 2.
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1718 THOMAS LETENDRE & MARTIN PUCHOL

Hence, we have

χ(Λ(z)1/2L) = χ(X(z), Y(z)) = |det⊥(X(z))| |det⊥(Y(z))|
= Ψ(‖z‖2, (Aij), (Bij)),

where Ψ was defined by equation (A.11). Recall that Ψ satisfies (A.14) when
r = n. As in the proof of Lemma 4.17 (cf. Appendix A), by Lebesgue’s theorem
we have

(B.32)
2

‖z‖2

∫
χ(Λ(z)1/2L)‖L‖2e−(1/4)‖L‖

2
dL

=
∫

2
‖z‖2

Ψ(‖z‖2, (Aij), (Bij))‖L‖2e−(1/4)‖L‖
2
dL

------------------------------------------------------------------------------------------------------------------------------------------------→
‖z‖→0

∫
det

(
A1 − B1√

2
,
A2 + B2√

2
, . . . ,

An + Bn√
2

)2

‖L‖2e−(1/4)‖L‖
2
dL,

where Aj (respectively, Bj) denotes the j-th column of the matrix of A (respec-
tively, B) and L = (A, B). This limit is finite, which proves that (B.31) is satisfied,
and concludes the proof. ❐
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